精英家教网 > 高中数学 > 题目详情
16.已知函数f(x)=x2-2x+4,数列{an}是公差为d的等差数列,若a1=f(d-1),a3=f(d+1),则{an}的通项公式为(  )
A.2n-2B.2n+1C.2n+3D.n+2

分析 根据f(x)求出a1、a3,再利用等差数列的定义求出d与a1的值,即得通项公式an

解答 解:∵f(x)=x2-2x+4,
∴a1=f(d-1)=(d-1)2-2(d-1)+4=d2-4d+7,
a3=f(d+1)=(d+1)2-2(d+1)+4=d2+3;
∴a3-a1=4d-4,
即2d=4d-4,
解得d=2;
∴a1=3,
∴an=3+2(n-1)=2n+1.
故选:B.

点评 本题考查了根据函数的解析式求函数值的应用问题,也考查了等差数列的通项公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,首项a1=1,且对于任意n∈N+都有2Sn-nan+1=0,数列{bn}满足bn=$\frac{1}{{a}_{n}}$,T(n)是数列{bn}的前n项和.
(1)求数列{an}的通项公式
(2)用数学归纳法证明:当n≥2时,n+T(1)+T(2)+T(3)+…+T(n-1)=nT(n)
(3)设An=$\sqrt{{a}_{1}{a}_{2}}$+$\sqrt{{a}_{2}{a}_{3}}$+…+$\sqrt{{a}_{n}{a}_{n+1}}$,试证:$\frac{n(n+1)}{2}$<An<$\frac{(n+1)^{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=(2x-1)ex的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=|sinx+$\frac{1}{2}$|的最小正周期是2π,在(0,2π)内的单调递减区间是($\frac{π}{2}$,π)、($\frac{3π}{2}$,2π).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点(1,$\frac{\sqrt{3}}{2}$),离心率为$\frac{\sqrt{3}}{2}$.
(1)求椭圆C的方程;
(2)不垂直与坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点P(0,-$\frac{3}{2}$),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某校对高中三年级1200名男女学生的视力状况进行调查,采用分层抽样的方法抽取一个容量为100的样本,若该样本中女生比男生少20人,则该年级的女生人数为480.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设正项等比数列{an}的前n项和为Sn(n∈N*),且满足a4a6=$\frac{1}{4}$,a7=$\frac{1}{8}$,则S4的值为(  )
A.15B.14C.12D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设z=x+y,其中实数x,y满足$\left\{\begin{array}{l}x+2y≥0\\ x-y≤0\\ 0≤y≤m\end{array}\right.$若z的最小值为-3,则z的最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解方程:$\sqrt{3}$sinx-cosx=-$\frac{1}{2}$,x∈(0,π)

查看答案和解析>>

同步练习册答案