精英家教网 > 高中数学 > 题目详情
7.如果执行下面的框图,若输入的m,n的值分别为392,252,则输出的结果m=(  )
A.7B.14C.21D.28

分析 由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量m的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:当m=392,n=252时,r=140,m=252,n=140,
当m=252,n=140时,r=112,m=140,n=112,
当m=140,n=112时,r=28,m=112,n=28,
当m=112,n=28,r=0满足输出的条件,
故输出的m=28,
故选:D

点评 本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.若集合M={x|x=k•90°+45°,k∈Z},N={x|x=k•45°+90°,K∈Z},则M?N.(填“?”“?”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=$\left\{\begin{array}{l}{x+3,x>0}\\{1-3x,x≤0}\end{array}\right.$,则f[f(-1)]=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{a{x}^{2}+1,x≥0}\\{(a-1){e}^{ax},x<0}\end{array}\right.$在(-∞,+∞)上是单调函数,则实数a的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.菱形的对角线相等,正方形是菱形,所以正方形的对角线相等.在以上三段论的推理中(  )
A.大前提错误B.小前提错误C.推理形式错误D.结论错误

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.当x>-1时,函数y=x+$\frac{1}{x+1}$的最小值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某同学在一次研究性学习中发现,以下五个式子的值都等于同一个常数:
①sin213°+cos217°-sin13°cos17°;
②sin215°+cos215°-sin15°cos15°;
③sin218°+cos212°-sin18°cos12°;
④sin2(-18°)+cos248°-sin(-18°)cos48°;
⑤sin2(-25°)+cos255°-sin(-25°)cos55°.
(1)试从上述五个式子中选择一个,求出这个常数;
(2)根据(1)的计算结果,将该同学的发现推广为三角恒等式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知xi∈[0,π],i=1,2,3,…,n,则有
①sinx1=sinx1
②sinx1+sinx2≤2sin$\frac{{{x_1}+{x_2}}}{2}$
③sinx1+sinx2+sinx3≤3sin$\frac{{{x_1}+{x_2}+{x_3}}}{3}$
④sinx1+sinx2+sinx3+sinx4≤4sin$\frac{{{x_1}+{x_2}+{x_3}+{x_4}}}{4}$
由上述结论类比,猜想得到一般的结论是:$sin{x_1}+sin{x_2}+…+sin{x_n}≤nsin\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.由$\sqrt{2+\frac{2}{3}}=2\sqrt{\frac{2}{3}}$,$\sqrt{3+\frac{3}{8}}=3\sqrt{\frac{3}{8}}$,$\sqrt{4+\frac{4}{15}}=4\sqrt{\frac{4}{15}}$,$\sqrt{5+\frac{5}{24}}=5\sqrt{\frac{5}{24}}$,…,$\sqrt{10+\frac{a}{b}}=10\sqrt{\frac{a}{b}}$,推测a+b=109.

查看答案和解析>>

同步练习册答案