精英家教网 > 高中数学 > 题目详情
16.已知xi∈[0,π],i=1,2,3,…,n,则有
①sinx1=sinx1
②sinx1+sinx2≤2sin$\frac{{{x_1}+{x_2}}}{2}$
③sinx1+sinx2+sinx3≤3sin$\frac{{{x_1}+{x_2}+{x_3}}}{3}$
④sinx1+sinx2+sinx3+sinx4≤4sin$\frac{{{x_1}+{x_2}+{x_3}+{x_4}}}{4}$
由上述结论类比,猜想得到一般的结论是:$sin{x_1}+sin{x_2}+…+sin{x_n}≤nsin\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$.

分析 根据所给不等式,即可类比得出结论.

解答 解:根据①sinx1=sinx1
②sinx1+sinx2≤2sin$\frac{{{x_1}+{x_2}}}{2}$
③sinx1+sinx2+sinx3≤3sin$\frac{{{x_1}+{x_2}+{x_3}}}{3}$
④sinx1+sinx2+sinx3+sinx4≤4sin$\frac{{{x_1}+{x_2}+{x_3}+{x_4}}}{4}$
猜想得到一般的结论是$sin{x_1}+sin{x_2}+…+sin{x_n}≤nsin\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$.
故答案为:$sin{x_1}+sin{x_2}+…+sin{x_n}≤nsin\frac{{{x_1}+{x_2}+…+{x_n}}}{n}$.

点评 合情推理中的类比推理是指依据两类数学对象的相似性,将已知的一类数学对象的性质类比迁移到另一类数学对象上去.其思维过程大致是:观察、比较 联想、类推 猜测新的结论.结论的正确与否,必须经过证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.命题p:“函数f(x)=$\frac{1}{3}$x3+$\frac{1}{2}$ax2+(a-$\frac{3}{4}$)x+1在R上既有增区间又有减区间”,命题q:“不等式ax2+2ax+1>0对一切实数x都成立”,若“p或q”与“非q”同时为真,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果执行下面的框图,若输入的m,n的值分别为392,252,则输出的结果m=(  )
A.7B.14C.21D.28

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.身穿红、黄两种颜色衣服的各有两人,身穿蓝颜色衣服的有一人,现将这五人排成一行,要求穿相同颜色衣服的人不能相邻,则不同的排法共有(  )
A.24种B.48种C.36种D.28种

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.(两选一)
(1)一同学在电脑中打出如下图若干个圆(○表示空心圆,●表示实心圆)
○●○○●○○○●○○○○●○○○○○●○…
问:到2006个圆中有61 个实心圆.
(2)如图,它满足①第n行首尾两数均为n,②表中的递推关系类似杨辉三角,则第n行(n≥2)第2个数是$\frac{{n}^{2}-n+2}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设F是双曲线$\frac{x^2}{4}$-$\frac{y^2}{12}$=1的左焦点,A(1,4),P是双曲线右支上的动点,则|PF|+|PA|的最小值为(  )
A.5B.5+4$\sqrt{3}$C.7D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.程序框图中表示计算、赋值功能的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知F1,F2为双曲线x2-y2=1的两个焦点,P为双曲线上一点,且∠F1PF2=60°,则△F1PF2的面积为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在△ABC中,a,b,c分别为内角A,B,C的对边,若2b=a+c,且B=$\frac{π}{4}$,则cosA-cosC的值为(  )
A.$\sqrt{2}$B.$±\sqrt{2}$C.$\root{4}{2}$D.±$\root{4}{2}$

查看答案和解析>>

同步练习册答案