精英家教网 > 高中数学 > 题目详情
14.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是(  )
A.B.$\frac{10π}{3}$C.$\frac{11π}{3}$D.

分析 根据三视图可知几何体是组合体:上面是半个圆锥、下面是半个圆柱,并求出底面圆的半径以及几何体的高,由椎体、柱体的体积公式求出此几何体的体积.

解答 解:根据三视图可知几何体是组合体:上面是半个圆锥、下面是半个圆柱,
且圆锥的底面圆的半径r=2、高是2,圆柱的底面圆的半径r=2、高是1,
所以此几何体的体积V=$\frac{1}{2}×\frac{1}{3}π×4×2+\frac{1}{2}π×4×1$=$\frac{10π}{3}$,
故选B.

点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.在二项式(x2-$\frac{1}{x}$)n的展开式中,所有二项式系数的和是32,则展开式中所有整式项的系数和为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设|a|<1,函数f(x)=ax2+x-a(-1≤x≤1),证明:|f(x)|≤$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知锐角三角形ABC中,角A,B,C所对的边分别为a,b,c若c-a=2acosB,则$\frac{si{n}^{2}A}{sin(B-A)}$的取值范围是($\frac{1}{2}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知A(1,2),B(2,11),若直线y=(m-$\frac{6}{m}$)x+1(m≠0)与线段AB相交,则实数m的取值范围是(  )
A.[-2,0)∪[3,+∞)B.(-∞,-1]∪(0,6]C.[-2,-1]∪[3,6]D.[-2,0)∪(0,6]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率$e=\frac{{\sqrt{6}}}{3}$,直线y=bx+2与圆x2+y2=2相切.
(1)求椭圆的方程;
(2)已知定点E(1,0),若直线y=kx+2(k≠0)与椭圆相交于C,D两点,试判断是否存在实数k,使得以CD为直径的圆过定点E?若存在,求出k的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}-sinx,x>0\\ sinx,x≤0\end{array}\right.$,则下列结论正确的是(  )
A.f(x)是奇函数
B.f(x)是偶函数
C.f(x)是周期函数
D.f(x)在$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ](k∈z)$上为减函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,E是园O内两条弦AB和CD的交点,过AD延长线上一点F作圆O的切线FG,G为切点,已知EF=FG.求证:EF∥CB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.
(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;
(2)当D、E分别为线段VA、VC上的中点,且BC=1,CA=$\sqrt{3}$,VC=2时,求三棱锥A-BDE的体积.

查看答案和解析>>

同步练习册答案