精英家教网 > 高中数学 > 题目详情
5.设|a|<1,函数f(x)=ax2+x-a(-1≤x≤1),证明:|f(x)|≤$\frac{5}{4}$.

分析 利用绝对值不等式,结合配方法,即可证明结论.

解答 证明:∵|f(x)|=|a(x2-1)+x|≤|a(x2-1)|+|x|≤|x2-1|+|x|=1-x2+|x|=-(|x|-$\frac{1}{2}$)2+$\frac{5}{4}$≤$\frac{5}{4}$,
∴|f(x)|≤$\frac{5}{4}$.

点评 本题考查不等式的证明,考查绝对值不等式的运用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.在区间[0,1]上随机选取两个数x和y,则y>2x的概率为(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在直三棱柱ABC-A1BlC1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.宿州市日前提出,要提升市民的生活质量,改善民生,促进“中国梦”的实线,为此,某记者在街头随机采访了100名市民,根据他们对“中国梦”实线的信心情况进行统计分析,得到如下分布表:
信心级别  非常有信心有信心 不知道 没信心 
 信心指数(分数) 90 60 30 6
 人数(名) 42 38 14 6
(Ⅰ)以这100名市民信心指数为样本来估计市民的总体信心指数,若要从全市市民中随机任选3人进行信心跟踪,记ξ表示抽到信心级别为“非常有信心或有信心”市民人数,求ξ的分布列及期望;
(Ⅱ)从这100名市民中,任选两人,记他们的信心指数分别为m、n,求|m-n|≥60的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出S的值为(  )
A.16B.32C.64D.1024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数$f(x)=\frac{1}{3}m{x^3}+\frac{1}{2}n{x^2}+x+2017$,其中m∈{2,4,6,8},n∈{1,3,5,7},从这些函数中任取不同的两个函数,在它们在(1,f(1))处的切线相互平行的概率是(  )
A.$\frac{7}{120}$B.$\frac{7}{60}$C.$\frac{7}{30}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设抛物线x2=4y的焦点为F,过点F作斜率为k(k>0)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点,过点P作x轴的垂线与抛物线交于点M,若|MF|=4,则直线l的方程为(  )
A.$y=2\sqrt{2}x+1$B.$y=\sqrt{3}x+1$C.$y=\sqrt{2}x+1$D.$y=2\sqrt{3}x+2$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是(  )
A.B.$\frac{10π}{3}$C.$\frac{11π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若复数z=(m2-m-2)+(m+1)i(i为虚数单位)为纯虚数,其中m∈R,则m=2.

查看答案和解析>>

同步练习册答案