精英家教网 > 高中数学 > 题目详情
16.在直三棱柱ABC-A1BlC1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有(  )
A.①②B.②③C.①③D.①②③

分析 在①中,由AA1$\underset{∥}{=}$EH$\underset{∥}{=}$GF,知四边形EFGH是平行四边形;在②中,平面α与平面BCC1B1平行或相交;在③中,EH⊥平面BCEF,从而平面α⊥平面BCFE.

解答 解:如图,∵在直三棱柱ABC-A1BlC1中,
平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.
∴AA1$\underset{∥}{=}$EH$\underset{∥}{=}$GF,∴四边形EFGH是平行四边形,故①正确;
∵EF与BC不一定平行,∴平面α与平面BCC1B1平行或相交,故②错误;
∵AA1$\underset{∥}{=}$EH$\underset{∥}{=}$GF,且AA1⊥平面BCEF,∴EH⊥平面BCEF,
∵EH?平面α,∴平面α⊥平面BCFE,故③正确.
故选:C.

点评 本题考查命题真假的判断,是中档题,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某商场计划销售某种产品,现邀请生产该产品的甲、乙两个厂家进场试销10天.两个厂家提供的返利方案如下:甲厂家每天固定返利70元,且每卖出一件产品厂家再返利2元;乙厂家无固定返利,卖出40件以内(含40件)的产品,每件产品厂家返利4元,超出40件的部分每件返利6元.经统计,两个厂家的试销情况茎叶图如下:
8998993899
201042111010
(Ⅰ)现从甲厂家试销的10天中抽取两天,求这两天的销售量都大于40的概率;
(Ⅱ)若将频率视作概率,回答以下问题:
(ⅰ)记乙厂家的日返利额为X(单位:元),求X的分布列和数学期望;
(ⅱ)商场拟在甲、乙两个厂家中选择一家长期销售,如果仅从日返利额的角度考虑,请利用所学的统计学知识为商场作出选择,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,圆O与离心率为$\frac{{\sqrt{3}}}{2}$的椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)相切于点M(0,1).
(Ⅰ)求椭圆的方程;
(Ⅱ)过点M引两条互相垂直的两直线l1、l2与两曲线分别交于点A、C与点B、D(均不重合).
(ⅰ)若P为椭圆上任一点,记点P到两直线的距离分别为d1、d2,求$d_1^2+d_2^2$的最大值;
(ⅱ)若$3\overrightarrow{MA}•\overrightarrow{MC}=4\overrightarrow{MB}•\overrightarrow{MD}$,求l1与l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在二项式(x2-$\frac{1}{x}$)n的展开式中,所有二项式系数的和是32,则展开式中所有整式项的系数和为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>b>0)$的左,右焦点分别为F1,F2,双曲线上一点P满足PF2⊥x轴,若|F1F2|=12,|PF2|=5,则该双曲线的离心率为(  )
A.$\frac{13}{12}$B.$\frac{12}{5}$C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,角A,B,C的对边分别为a,b,c,且满足(2a+b)cosC+ccosB=0
(Ⅰ)求角C的大小.
(Ⅱ)若c=6,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在等比数列{an}中,a2•a3是a12和a42的等差中项,则$\frac{{S}_{6}}{{S}_{3}}$=(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设|a|<1,函数f(x)=ax2+x-a(-1≤x≤1),证明:|f(x)|≤$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数$f(x)=\left\{\begin{array}{l}-sinx,x>0\\ sinx,x≤0\end{array}\right.$,则下列结论正确的是(  )
A.f(x)是奇函数
B.f(x)是偶函数
C.f(x)是周期函数
D.f(x)在$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ](k∈z)$上为减函数

查看答案和解析>>

同步练习册答案