精英家教网 > 高中数学 > 题目详情
8.在等比数列{an}中,a2•a3是a12和a42的等差中项,则$\frac{{S}_{6}}{{S}_{3}}$=(  )
A.1B.2C.3D.4

分析 a2•a3是a12和a42的等差中项,可得2a2•a3=a12+a42,2q3=1+q6,解得q.即可得出.

解答 解:∵a2•a3是a12和a42的等差中项,∴2a2•a3=a12+a42,∴2q3=1+q6,解得q3=1,解得q=1.
$\frac{{S}_{6}}{{S}_{3}}$=$\frac{6{a}_{1}}{3{a}_{1}}$=2,
故选:B.

点评 本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.某市为了解各校(同学)课程的教学效果,组织全市各学校高二年级全体学生参加了国学知识水平测试,测试成绩从高到低依次分为A、B、C、D四个等级,随机调阅了甲、乙两所学校各60名学生的成绩,得到如图所示分布图:

(Ⅰ)试确定图中实数a与b的值;
(Ⅱ)若将等级A、B、C、D依次按照90分、80分、60分、50分转换成分数,试分别估计两校学生国学成绩的均值;
(Ⅲ)从两校获得A等级的同学中按比例抽取5人参加集训,集训后由于成绩相当,决定从中随机选2人代表本市参加省级比赛,求两人来自同一学校的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知圆锥母线长为5,底面圆半径长为4,点M是母线PA的中点,AB是底面圆的直径,点C是弧AB的中点;
(1)求三棱锥P-ACO的体积;
(2)求异面直线MC与PO所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在直三棱柱ABC-A1BlC1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有(  )
A.①②B.②③C.①③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知角α的终边与单位圆交于点(-$\frac{2\sqrt{5}}{5}$,-$\frac{\sqrt{5}}{5}$),则sin2α的值为(  )
A.$\frac{\sqrt{5}}{5}$B.-$\frac{\sqrt{5}}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.宿州市日前提出,要提升市民的生活质量,改善民生,促进“中国梦”的实线,为此,某记者在街头随机采访了100名市民,根据他们对“中国梦”实线的信心情况进行统计分析,得到如下分布表:
信心级别  非常有信心有信心 不知道 没信心 
 信心指数(分数) 90 60 30 6
 人数(名) 42 38 14 6
(Ⅰ)以这100名市民信心指数为样本来估计市民的总体信心指数,若要从全市市民中随机任选3人进行信心跟踪,记ξ表示抽到信心级别为“非常有信心或有信心”市民人数,求ξ的分布列及期望;
(Ⅱ)从这100名市民中,任选两人,记他们的信心指数分别为m、n,求|m-n|≥60的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.执行如图所示的程序框图,则输出S的值为(  )
A.16B.32C.64D.1024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设抛物线x2=4y的焦点为F,过点F作斜率为k(k>0)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点,过点P作x轴的垂线与抛物线交于点M,若|MF|=4,则直线l的方程为(  )
A.$y=2\sqrt{2}x+1$B.$y=\sqrt{3}x+1$C.$y=\sqrt{2}x+1$D.$y=2\sqrt{3}x+2$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知四边形ABCD为直角梯形,AD∥BC,AB⊥BC,BC=2AB=4,AD=3,F为BC中点,EF∥AB,EF与AD交于点E,沿EF将四边形EFCD折起,使得平面ABFE⊥平面EFCD,连接AD,BC,AC.
(1)求证:BE∥平面ACD;
(2)求三棱锥的B-ACD体积.

查看答案和解析>>

同步练习册答案