精英家教网 > 高中数学 > 题目详情
(2011•东城区二模)对任意x∈R,函数f(x)满足f(x+1)=
f(x)-[f(x)]2
+
1
2
,设an=[f(n)]2-f(n),数列{an}的前15项的和为-
31
16
,则f(15)=
3
4
3
4
分析:通过f(x+1)=
f(x)-[f(x)]2
+
1
2
推出数列第n项与第n+1项的关系,找出规律,求出a15,然后解出f(15)=的值.
解答:解:∵f(x+1)=
f(x)-[f(x)]2
+
1
2

f(x+1)-
1
2
=
f(x)-[f(x)]2

两边平方得[f(x+1)-
1
2
]
2
=f(x)-[f(x)]2

⇒[f(x+1)]2-f(x+1)+
1
4
=f(x)-[f(x)]2

an+1+an=-
1
4
,即数列{an}任意相邻两项相加为常数-
1
4

S15=7×(-
1
4
)+a15=-
31
16
a15=-
3
16

[f(15)]2-f(15)=-
3
16
⇒f(15)=
3
4
或f(15)=
1
4

又由f(x+1)=
f(x)-[f(x)]2
+
1
2
1
2

可得f(15)=
3
4

故答案为:
3
4
点评:本题是中档题,考查数列与函数的关系,数列的递推关系式,推出数列中的规律是解题的关键,注意验证数列的项是否在数列中,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•东城区二模)给出下列三个命题:
①?x∈R,x2>0;
②?x0∈R,使得x02≤x0成立;
③对于集合M,N,若x∈M∩N,则x∈M且x∈N.
其中真命题的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知正项数列{an}中,a1=1,a2=2,2an2=an+12+an-12(n≥2),则a6等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知双曲线
x2
a2
-
y2
b2
=1 (a>0,b>0)
,过其右焦点且垂直于实轴的直线与双曲线交于M,N两点,O为坐标原点.若OM⊥ON,则双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)某地为了调查职业满意度,决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成调查小组,有关数据见下表,则调查小组的总人数为
9
9
;若从调查小组中的公务员和教师中随机选2人撰写调查报告,则其中恰好有1人来自公务员的概率为
3
5
3
5

相关人员数 抽取人数
公务员 32 x
教师 48 y
自由职业者 64 4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•东城区二模)已知点P(2,t)在不等式组
x-y-4≤0
x+y-3≤0
表示的平面区域内,则点P(2,t)到直线3x+4y+10=0距离的最大值为
4
4

查看答案和解析>>

同步练习册答案