精英家教网 > 高中数学 > 题目详情

设向量.
⑴若,求的值;
⑵设函数,求的最大值.

(1);(2)

解析试题分析:(1)题中唯一已知条件是两个向量的模相等,那么我们把这个条件化简得,这样正好解出,由三角函数值求角,还要确定角的范围,本题中,从而有
(2)同(1)把化简,变为我们熟悉的函数,,这是三角函数,一般要化为形式,然后利用正弦函数的性质解决问题,
因此最大值为
试题解析:(1)∵,∴,∵,∴.        7分
(2)
 
    ∴
最大值为.        14分
考点:(1)已知三角函数值,求角;(2)三角函数的最大值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数
(Ⅰ)求函数的单调递增区间;
(Ⅱ)若关于的方程在区间上有两个不同的实数根,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知角的顶点在原点,始边与轴的正半轴重合,终边经过点.
(Ⅰ)求的值;
(Ⅱ)若函数,求函数在区间上的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量,函数.将函数的图象上各点的纵坐标保持不变,横坐标先缩短到原来的,把所得到的图象再向左平移个单位,得到函数的图象.
(1)求函数的单调递增区间;
(2)若,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知中,三条边所对的角分别为,且.
(1)求角的大小;
(2)若,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,图象为函数的部分图象

(1)求的解析式
(2)已知的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知向量
(1)若,求向量的夹角;
(2)当时,求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数,且的图象的一个对称中心到最近的对称轴的距离为,
(Ⅰ)求的值
(Ⅱ)求在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1) 求的最小正周期及其图像的对称轴方程;
(2) 将函数的图像向右平移个单位长度,得到函数的图像,求在区间的值域.

查看答案和解析>>

同步练习册答案