精英家教网 > 高中数学 > 题目详情
11.直线$\frac{x+1}{2}$=$\frac{y-3}{-1}$=$\frac{z+2}{-2}$与$\frac{x-2}{2}$=$\frac{y-1}{-2}$=$\frac{z}{3}$的位置关系是垂直.

分析 根据两条直线的方向向量的数量积为0,得出这两条直线互相垂直.

解答 解:直线$\frac{x+1}{2}$=$\frac{y-3}{-1}$=$\frac{z+2}{-2}$的方向向量是
$\overrightarrow{{v}_{1}}$=(2,-1,-2),
直线$\frac{x-2}{2}$=$\frac{y-1}{-2}$=$\frac{z}{3}$的方向向量是
$\overrightarrow{{v}_{2}}$=(2,-2,3),
且$\overrightarrow{{v}_{1}}$•$\overrightarrow{{v}_{2}}$=2×2-1×(-2)-2×3=0,
∴这两条直线的位置关系是垂直.
故答案为:垂直.

点评 本题考查了根据空间中直线的方向向量判断直线互相垂直的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.记样本x1,x2,…,xm的平均数为$\overline{x}$,样本y1,y2,…,yn的平均数为$\overline{y}$($\overline{x}$≠$\overline{y}$),若样本x1,x2,…,xm,y1,y2,…,yn的平均数为$\overline{z}$=$\frac{1}{4}$$\overline{x}$+$\frac{3}{4}$$\overline{y}$,则$\frac{m}{n}$的值为(  )
A.3B.4C.$\frac{1}{4}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知非常数数列{an}满足a1=1,an+12-3an+1an+2an2=0(n∈N*);数列{bn}满足$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$=n2(n∈N*
(1)求数列{an}和{bn}的通项公式an,bn
(2)令cn=$\frac{{a}_{n}}{{b}_{n}}$,求数列{cn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知O为坐标原点,F为抛物线y2=4x的焦点,直线l:y=m(x-1)与抛物线交于A,B两点,点A在第一象限,若|FA|=3|FB|.则m的值为(  )
A.3B.$\sqrt{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.设集合A={x|x2-2x≥0},B={x|-1<x<2},则A∩B=(  )
A.{x|0≤x≤2}B.{x|0<x<2}C.{x|-1≤x<0}D.{x|-1<x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点A(-4,0),B(0,2)和点P(m,n)(m≠0)都在椭圆C上,BP⊥AB,且直线BP与x轴交于点M.
(Ⅰ)求椭圆C的标准方程和离心率;
(Ⅱ)求点P的坐标;
(Ⅲ)若以M为圆心,r为半径的圆在椭圆C的内部,求r的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如果曲线2|x|-y-4=0的图象与曲线C:x2+λy2=4恰好有两个不同的公共点,则实数λ的取值范围是(  )
A.[-$\frac{1}{4}$,$\frac{1}{4}$]B.[-$\frac{1}{4}$,$\frac{1}{4}$)C.(-∞,-$\frac{1}{4}$]∪[0,$\frac{1}{4}$)D.(-∞,-$\frac{1}{4}$]∪[$\frac{1}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数y=$\frac{1}{2}$sin($\frac{2x}{3}$-$\frac{π}{4}$).
(1)这个函数的周期T=3π;
(2)当x=x=$\frac{9π}{8}$+3kπ,k∈Z时,ymax=$\frac{1}{2}$;当x=x=3kπ-$\frac{3π}{8}$,k∈Z时,ymin=-$\frac{1}{2}$.
(3)当x=$\frac{3π}{2}$时,y=$\frac{\sqrt{2}}{4}$;当x=$\frac{3π}{8}$时,y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设O为△ACB中一点,满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,求△ACB的面积.

查看答案和解析>>

同步练习册答案