精英家教网 > 高中数学 > 题目详情
1.设O为△ACB中一点,满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,求△ACB的面积.

分析 由|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,可得O为△ACB的外接圆的圆心,且外接圆半径为1,把$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$移向平方,化简得到∠AOB=120°,同理得到∠AOC=∠BOC=120°,则△ACB为等边三角形,利用余弦定理求出边长,则三角形面积可求.

解答 解:∵|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,
∴O为△ACB的外接圆的圆心,且外接圆半径为1,
又$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴$\overrightarrow{OA}$+$\overrightarrow{OB}$=-$\overrightarrow{OC}$,
两边平方得,$(\overrightarrow{OA}+\overrightarrow{OB})^{2}=|\overrightarrow{OA}{|}^{2}+|\overrightarrow{OB}{|}^{2}+2|\overrightarrow{OA}||\overrightarrow{OB}|cos∠AOB$=$|-\overrightarrow{OC}{|}^{2}$,
∴cos$∠AOB=-\frac{1}{2}$,则∠AOB=120°,
同理求得∠AOC=∠BOC=120°,
则△ACB为等边三角形,
∴边长为$\sqrt{{1}^{2}+{1}^{2}-2×1×1×cos120°}$=$\sqrt{2-2×(-\frac{1}{2})}=\sqrt{3}$,
∴一边上的高为$\sqrt{(\sqrt{3})^{2}-(\frac{\sqrt{3}}{2})^{2}}=\frac{3}{2}$.
∴△ACB的面积为S=$\frac{1}{2}×\sqrt{3}×\frac{3}{2}=\frac{3\sqrt{3}}{4}$.

点评 本题考查向量的三角形法则,考查平面向量的数量积运算,训练了三角形面积的求法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.直线$\frac{x+1}{2}$=$\frac{y-3}{-1}$=$\frac{z+2}{-2}$与$\frac{x-2}{2}$=$\frac{y-1}{-2}$=$\frac{z}{3}$的位置关系是垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.曲线y=x2+2与直线5x-y-4=0所围成的图形的面积等于$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数y=-sin2x+$\sqrt{3}$cosx+$\frac{5}{4}$的最大值及最小值,并写出x取何值时函数有最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若直线1的倾斜角是120°,且该直线过点(1,k)和(-2,0),则k=(  )
A.-3$\sqrt{3}$B.3$\sqrt{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.过点M(-1,-2)作直线l交直线x+2y+1=0于点N,当线段MN最短时,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i是虚数单位,若z1=a+$\frac{\sqrt{3}}{2}$i,z2=a-$\frac{\sqrt{3}}{2}$i,若$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,则实数a=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$或-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数$f(x)=\left\{{\begin{array}{l}{{4^{{{log}_2}(x-8)}}(x≥9)}\\{2{x^2}-x-8(x<9)}\end{array}}\right.$,若f(t)=4,则t的值为(  )
A.10B.6或10C.6D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=asinωx+bcosωx+1(a,b≠0,ω>0)的最小正周期是π.f(x)有最大值7$\frac{1}{2}$,且f($\frac{π}{6}$)=$\frac{5\sqrt{3}}{4}$+4(1)求a,b的值
(2)若α≠kπ+β,(k∈Z),且α,β是f(x)=0的两根,求tan(α+β)的值.

查看答案和解析>>

同步练习册答案