精英家教网 > 高中数学 > 题目详情
4.设函数$f(x)=\left\{{\begin{array}{l}{{4^{{{log}_2}(x-8)}}(x≥9)}\\{2{x^2}-x-8(x<9)}\end{array}}\right.$,若f(t)=4,则t的值为(  )
A.10B.6或10C.6D.不存在

分析 利用分段函数列出方程利用对数以及二次方程求解即可.

解答 解:当t<9时,f(t)=2t2-t+8=4⇒2t2-t+4=0,无解;
当t≥9时,$f(t)={4}^{lo{g}_{2}(t-8)}={2}^{lo{g}_{2}(t-8)^{2}}$=(t-8)2=4,解得t=6(舍去)或t=10.
故A项正确.
故选:A.

点评 本题考查分段函数的应用,函数与方程的解法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数y=$\frac{1}{2}$sin($\frac{2x}{3}$-$\frac{π}{4}$).
(1)这个函数的周期T=3π;
(2)当x=x=$\frac{9π}{8}$+3kπ,k∈Z时,ymax=$\frac{1}{2}$;当x=x=3kπ-$\frac{3π}{8}$,k∈Z时,ymin=-$\frac{1}{2}$.
(3)当x=$\frac{3π}{2}$时,y=$\frac{\sqrt{2}}{4}$;当x=$\frac{3π}{8}$时,y=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设O为△ACB中一点,满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,求△ACB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知单位向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为$\frac{π}{6}$,$\overrightarrow{OD}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OC}$=-$\overrightarrow{a}$+3$\overrightarrow{b}$,求|$\overrightarrow{CD}$|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x是x1,x2,…,x10的平均值,a1为x1,x2,x3,x4的平均值,a2为x5,x6,x10的平均值,则x=(  )
A.$\frac{2{a}_{1}+3{a}_{2}}{5}$B.$\frac{3{a}_{1}+2{a}_{2}}{5}$C.a1+a2D.$\frac{{a}_{1}+{a}_{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,t),若$\overrightarrow{a}$∥$\overrightarrow{b}$,则实数t的值是-4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1、F2,过F2的直线交双曲线于P,Q两点且PQ⊥PF1,若|PQ|=λ|PF1|,$\frac{5}{12}≤λ≤\frac{4}{3}$,则双曲线离心率e的取值范围为(  )
A.$(1,\frac{{\sqrt{10}}}{2}]$B.$(1,\frac{{\sqrt{37}}}{5}]$C.$[\frac{{\sqrt{37}}}{5},\frac{{\sqrt{10}}}{2}]$D.$[\frac{{\sqrt{10}}}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(1)证明:AC1⊥A1B;
(2)设二面角A1-AB-C的正切值为$\sqrt{15}$.求直线AA1与平面BCC1B1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,圆柱内有一个三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形,圆柱侧面积为16π,其底面直径与母线长相等,则此三棱柱的体积为(  )
A.6$\sqrt{3}$B.12C.12$\sqrt{3}$D.16$\sqrt{3}$

查看答案和解析>>

同步练习册答案