精英家教网 > 高中数学 > 题目详情
16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1、F2,过F2的直线交双曲线于P,Q两点且PQ⊥PF1,若|PQ|=λ|PF1|,$\frac{5}{12}≤λ≤\frac{4}{3}$,则双曲线离心率e的取值范围为(  )
A.$(1,\frac{{\sqrt{10}}}{2}]$B.$(1,\frac{{\sqrt{37}}}{5}]$C.$[\frac{{\sqrt{37}}}{5},\frac{{\sqrt{10}}}{2}]$D.$[\frac{{\sqrt{10}}}{2},+∞)$

分析 由PQ⊥PF1,|PQ|=λ|PF1|,可得|QF1|=$\sqrt{1+{λ}^{2}}$|PF1|,由双曲线的定义可得2a=|PF1|-|PF2|=|QF1|-|QF2|,解得|PF1|=$\frac{4a}{1-λ+\sqrt{1+{λ}^{2}}}$,|PF2|=|PF1|-2a,由勾股定理可得:2c=|F1F2|=$\sqrt{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}}$,代入化简.令t=1-λ+$\sqrt{1+{λ}^{2}}$,则上式化为8($\frac{1}{t}$-$\frac{1}{4}$)2+$\frac{1}{2}$,由t关于λ单调递减,可得$\frac{4}{3}$≤t<$\frac{5}{3}$,即$\frac{3}{5}$≤$\frac{1}{t}$≤$\frac{3}{4}$,由二次函数的单调性解出即可.

解答 解:可设P,Q为双曲线右支上一点,
由PQ⊥PF1,|PQ|=λ|PF1|,
在直角三角形PF1Q中,|QF1|=$\sqrt{|P{F}_{1}{|}^{2}+|PQ{|}^{2}}$=$\sqrt{1+{λ}^{2}}$|PF1|,
由双曲线的定义可得:2a=|PF1|-|PF2|=|QF1|-|QF2|,
由|PQ|=λ|PF1|,即有|PF2|+|QF2|=λ|PF1|,
即为|PF1|-2a+$\sqrt{1+{λ}^{2}}$|PF1|-2a=λ|PF1|,
∴(1-λ+$\sqrt{1+{λ}^{2}}$)|PF1|=4a,
解得|PF1|=$\frac{4a}{1-λ+\sqrt{1+{λ}^{2}}}$.
|PF2|=|PF1|-2a=$\frac{2a(1+λ-\sqrt{1+{λ}^{2})}}{1-λ+\sqrt{1+{λ}^{2}}}$,
由勾股定理可得:2c=|F1F2|=$\sqrt{|P{F}_{1}{|}^{2}+|P{F}_{2}{|}^{2}}$,
即有($\frac{4a}{1-λ+\sqrt{1+{λ}^{2}}}$)2+[$\frac{2a(1+λ-\sqrt{1+{λ}^{2})}}{1-λ+\sqrt{1+{λ}^{2}}}$]2=4c2
即为$\frac{4}{(1-λ+\sqrt{1+{λ}^{2}})^{2}}$+$\frac{(1+λ-\sqrt{1+{λ}^{2}})^{2}}{(1-λ+\sqrt{1+{λ}^{2}})^{2}}$=e2
令t=1-λ+$\sqrt{1+{λ}^{2}}$,则上式化为e2=$\frac{4+(t-2)^{2}}{{t}^{2}}$=8($\frac{1}{t}$-$\frac{1}{4}$)2+$\frac{1}{2}$,
由t=1-λ+$\sqrt{1+{λ}^{2}}$=1+$\frac{1}{\sqrt{1+{λ}^{2}}+λ}$,
且$\frac{5}{12}$≤λ≤$\frac{4}{3}$,
由t关于λ单调递减,可得$\frac{4}{3}$≤t<$\frac{5}{3}$
即$\frac{3}{5}$≤$\frac{1}{t}$≤$\frac{3}{4}$,
由$\frac{1}{4}$∉[$\frac{3}{5}$,$\frac{3}{4}$],可得e2在[$\frac{3}{5}$,$\frac{3}{4}$]递增,
$\frac{37}{25}$≤e2≤$\frac{5}{2}$,解得$\frac{\sqrt{37}}{5}$≤e≤$\frac{\sqrt{10}}{2}$.
可得椭圆离心率的取值范围是[$\frac{\sqrt{37}}{5}$,$\frac{\sqrt{10}}{2}$].
故选:C.

点评 本题考查了双曲线的定义、方程及其性质,考查勾股定理、函数的单调性的运用,以及换元法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.曲线y=x2+2与直线5x-y-4=0所围成的图形的面积等于$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i是虚数单位,若z1=a+$\frac{\sqrt{3}}{2}$i,z2=a-$\frac{\sqrt{3}}{2}$i,若$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,则实数a=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$或-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设函数$f(x)=\left\{{\begin{array}{l}{{4^{{{log}_2}(x-8)}}(x≥9)}\\{2{x^2}-x-8(x<9)}\end{array}}\right.$,若f(t)=4,则t的值为(  )
A.10B.6或10C.6D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的离心率为e,一条渐近线的方程为y=$\sqrt{2e-1}$x,则e=(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知等腰梯形ABCD(如图(1)所示),其中AB∥CD,E,F分別为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点.现将梯形ABCD沿着EF所在直线折起,使平面EFCB⊥平面EFDA(如图(2)所示),N是线段CD上一动点,且CN=$\frac{1}{2}$ND.
(1)求证:MN∥平面 EFDA;
(2)求三棱锥A-MNF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过定点P(1,2)的直线$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t为参数),与圆x2+y2=4相交于A、B两点.则|AB|=$\sqrt{3+4\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=asinωx+bcosωx+1(a,b≠0,ω>0)的最小正周期是π.f(x)有最大值7$\frac{1}{2}$,且f($\frac{π}{6}$)=$\frac{5\sqrt{3}}{4}$+4(1)求a,b的值
(2)若α≠kπ+β,(k∈Z),且α,β是f(x)=0的两根,求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“Ω集合”.给出下列4个集合:
①M={(x,y)|y=lgx}               
②M={(x,y)|y=cosx+sinx}
③M={(x,y)|y=-$\frac{1}{x}$}               
④M={(x,y)|y=ex-3}
其中是“Ω集合”的所有序号是(  )
A.②③B.②④C.①②④D.①③④

查看答案和解析>>

同步练习册答案