精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=asinωx+bcosωx+1(a,b≠0,ω>0)的最小正周期是π.f(x)有最大值7$\frac{1}{2}$,且f($\frac{π}{6}$)=$\frac{5\sqrt{3}}{4}$+4(1)求a,b的值
(2)若α≠kπ+β,(k∈Z),且α,β是f(x)=0的两根,求tan(α+β)的值.

分析 (1)根据辅助角公式f(x)=$\sqrt{{a}^{2}+{b}^{2}}$sin(ωx+φ)+1,f(x)有最大值7$\frac{1}{2}$,$\sqrt{{a}^{2}+{b}^{2}}$=6$\frac{1}{2}$,
f($\frac{π}{6}$)=$\frac{5\sqrt{3}}{4}$+4,a+$\frac{1}{2}$b=$\frac{5\sqrt{3}}{4}$+3,联立求得a、b的值,
(2)根据和差化积公式改写成cos(α+β+φ)sin(α-β)=0,α≠kπ+β,(k∈Z),sin(α-β)≠0,cos(α+β+φ)=0,求得α+β=kπ+$\frac{π}{2}$-φ(k∈Z),再求得tan(α+β).

解答 解:(1)f(x)=asinωx+bcosωx+1=$\sqrt{{a}^{2}+{b}^{2}}$sin(ωx+φ)+1,
最小正周期是π,ω=$\frac{2π}{T}$=2,
f(x)有最大值7$\frac{1}{2}$,$\sqrt{{a}^{2}+{b}^{2}}$=6$\frac{1}{2}$,①
f($\frac{π}{6}$)=$\frac{5\sqrt{3}}{4}$+4,
asin$\frac{π}{3}$+bcos$\frac{π}{3}$+1=$\frac{5\sqrt{3}}{4}$+4,
$\frac{\sqrt{3}}{2}$a+$\frac{1}{2}$b=$\frac{5\sqrt{3}}{4}$+3,②
联立①②解得:a=$\frac{5}{2}$,b=6,
∴a=$\frac{5}{2}$,b=6,
(2)tanφ=$\frac{12}{5}$,f(x)=6$\frac{1}{2}$sin(2x+φ)+1,
α,β是f(x)=0的两根,f(α)=f(β)=0,
sin(2α+φ)-sin(2β+φ)=0.
∴cos(α+β+φ)sin(α-β)=0,
α≠kπ+β,(k∈Z),sin(α-β)≠0,
α+β=kπ+$\frac{π}{2}$-φ(k∈Z).
∴tan(α+β)=tan($\frac{π}{2}$-φ)=$\frac{sin(\frac{π}{2}-φ)}{cos(\frac{π}{2}-φ)}$,
tan(α+β)=$\frac{cosφ}{sinφ}$=$\frac{1}{tanφ}$=$\frac{5}{12}$,
tan(α+β)=$\frac{5}{12}$.

点评 本题考查辅助角公式及积化和差公式,过程复杂,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设O为△ACB中一点,满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,求△ACB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1、F2,过F2的直线交双曲线于P,Q两点且PQ⊥PF1,若|PQ|=λ|PF1|,$\frac{5}{12}≤λ≤\frac{4}{3}$,则双曲线离心率e的取值范围为(  )
A.$(1,\frac{{\sqrt{10}}}{2}]$B.$(1,\frac{{\sqrt{37}}}{5}]$C.$[\frac{{\sqrt{37}}}{5},\frac{{\sqrt{10}}}{2}]$D.$[\frac{{\sqrt{10}}}{2},+∞)$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,三棱柱ABC-A1B1C1中,点A1在平面ABC内的射影D在AC上,∠ACB=90°,BC=1,AC=CC1=2.
(1)证明:AC1⊥A1B;
(2)设二面角A1-AB-C的正切值为$\sqrt{15}$.求直线AA1与平面BCC1B1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于函数y=F(x),若在其定义域内存在x0,使得x0•F(x0)=1成立,则称x0为函数F(x)的“反比点”.已知函数f(x)=lnx,g(x)=$\frac{1}{2}{(x-1)^2}$-1
(1)求证:函数f(x)具有“反比点”,并讨论函数f(x)的“反比点”个数;
(2)若x≥1时,恒有x•f(x)≤λ(g(x)+x)成立,求λ的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.某地市高三理科学生有15000名,在-次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知P(80<ξ≤100)=0.40,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取10份.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若在区间[0,π]上随机取一个数x,则sinx的值落在区间($\frac{1}{2}$,1)内的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如图,圆柱内有一个三棱柱,三棱柱的底面在圆柱底面内,且底面是正三角形,圆柱侧面积为16π,其底面直径与母线长相等,则此三棱柱的体积为(  )
A.6$\sqrt{3}$B.12C.12$\sqrt{3}$D.16$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x2-x<0},B=(0,a)(a>0),若A⊆B,则实数a的取值范围是a≥1.

查看答案和解析>>

同步练习册答案