精英家教网 > 高中数学 > 题目详情
17.若在区间[0,π]上随机取一个数x,则sinx的值落在区间($\frac{1}{2}$,1)内的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{2}{π}$

分析 根据几何概型的概率公式进行求解即可.

解答 解:在区间[0,π]上,由$\frac{1}{2}$<sinx<1,得$\frac{π}{6}$<x<$\frac{π}{2}$或$\frac{π}{2}$<x<$\frac{5π}{6}$,
则对应的概率P=$\frac{2(\frac{π}{2}-\frac{π}{6})}{π}$=$\frac{2}{3}$,
故选:C

点评 本题主要考查几何概型的概率的计算,根据三角函数的关系求出x的取值范围是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知i是虚数单位,若z1=a+$\frac{\sqrt{3}}{2}$i,z2=a-$\frac{\sqrt{3}}{2}$i,若$\frac{{z}_{1}}{{z}_{2}}$为纯虚数,则实数a=(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$或-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.过定点P(1,2)的直线$\left\{\begin{array}{l}{x=1+\frac{\sqrt{3}}{2}t}\\{y=2+\frac{1}{2}t}\end{array}\right.$(t为参数),与圆x2+y2=4相交于A、B两点.则|AB|=$\sqrt{3+4\sqrt{3}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=asinωx+bcosωx+1(a,b≠0,ω>0)的最小正周期是π.f(x)有最大值7$\frac{1}{2}$,且f($\frac{π}{6}$)=$\frac{5\sqrt{3}}{4}$+4(1)求a,b的值
(2)若α≠kπ+β,(k∈Z),且α,β是f(x)=0的两根,求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知过定点P(2,0)的直线l与曲线$y=\sqrt{2-{x^2}}$相交于A,B两点,O为坐标原点,当△AOB的面积最大时,直线l的倾斜角为(  )
A.150°B.135°C.120°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}x+2y≤6\\ 2x-y≤6\\ x≥0,y≥0\end{array}\right.$则x-3y>0的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知等差数列{an}满足an∈N*,且前10项和S10=280,则a9的最大值为(  )
A.29B.49C.50D.58

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“Ω集合”.给出下列4个集合:
①M={(x,y)|y=lgx}               
②M={(x,y)|y=cosx+sinx}
③M={(x,y)|y=-$\frac{1}{x}$}               
④M={(x,y)|y=ex-3}
其中是“Ω集合”的所有序号是(  )
A.②③B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设两条直线的方程分别为x+$\sqrt{3}$y+a=0,x+$\sqrt{3}$y+b=0,已知a,b是方程x2+2x+c=0的两个实根,且0≤c≤$\frac{1}{2}$,则这两条直线之间的距离的最大值和最小值的差为(  )
A.$\frac{{2-\sqrt{2}}}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{4-\sqrt{14}}}{4}$

查看答案和解析>>

同步练习册答案