精英家教网 > 高中数学 > 题目详情
15.已知集合A={x|x2-x<0},B=(0,a)(a>0),若A⊆B,则实数a的取值范围是a≥1.

分析 由x2-x<0,可得A=(0,1).再利用B=(0,a)(a>0),A⊆B,即可得出.

解答 解:由x2-x<0,解得0<x<1.∴A=(0,1).
∵B=(0,a)(a>0),A⊆B,
∴a≥1,
故答案为:a≥1.

点评 本题考查了不等式的解法、集合的运算性质,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=asinωx+bcosωx+1(a,b≠0,ω>0)的最小正周期是π.f(x)有最大值7$\frac{1}{2}$,且f($\frac{π}{6}$)=$\frac{5\sqrt{3}}{4}$+4(1)求a,b的值
(2)若α≠kπ+β,(k∈Z),且α,β是f(x)=0的两根,求tan(α+β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“Ω集合”.给出下列4个集合:
①M={(x,y)|y=lgx}               
②M={(x,y)|y=cosx+sinx}
③M={(x,y)|y=-$\frac{1}{x}$}               
④M={(x,y)|y=ex-3}
其中是“Ω集合”的所有序号是(  )
A.②③B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求过三点A(-1,0),B(1,-2),C(1,0)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如果复数z满足|z|=1且z2=a+bi,其中a,b∈R,则a+b的最大值是$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有-α(x2-x1)<f(x2)-f(x1)<α(x2-x1)成立.下列结论中正确的是(  )
A.若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈${M_{{α_1}•{α_2}}}$
B.若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则$\frac{f(x)}{g(x)}$∈${M_{\frac{α_1}{α_2}}}$
C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈${M_{{α_1}+{α_2}}}$
D.若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)-g(x)∈${M_{{α_1}-{α_2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设两条直线的方程分别为x+$\sqrt{3}$y+a=0,x+$\sqrt{3}$y+b=0,已知a,b是方程x2+2x+c=0的两个实根,且0≤c≤$\frac{1}{2}$,则这两条直线之间的距离的最大值和最小值的差为(  )
A.$\frac{{2-\sqrt{2}}}{2}$B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{4-\sqrt{14}}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知Sn为数列{an}的前n项和,且满足an=2Sn-1+2(n≥2);数列{bn}满足b1+b2+b3+…+bn=n2+n.
(1)数列{an}是等比数列吗?请说明理由;
(Ⅱ)若a1=b1,求数列{an•bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=($\sqrt{3}$-tanx)cos2x,x∈($\frac{π}{2}$,π]的单调减区间是[$\frac{11π}{12}$,π].

查看答案和解析>>

同步练习册答案