精英家教网 > 高中数学 > 题目详情
20.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有-α(x2-x1)<f(x2)-f(x1)<α(x2-x1)成立.下列结论中正确的是(  )
A.若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈${M_{{α_1}•{α_2}}}$
B.若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则$\frac{f(x)}{g(x)}$∈${M_{\frac{α_1}{α_2}}}$
C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈${M_{{α_1}+{α_2}}}$
D.若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)-g(x)∈${M_{{α_1}-{α_2}}}$

分析 由题意知$-α<\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<α$,从而求得.

解答 解:对于-α1(x2-x1)<f(x2)-f(x1)<α1(x2-x1),
即有$-α<\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}<α$,
令$\frac{{f({x_2})-f({x_1})}}{{{x_2}-{x_1}}}=k$,
则-α<k<α,
若$f(x)∈{M_{α_1}},g(x)∈{M_{α_2}}$,
即有-α1<kf<α1,-α2<kg<α2
所以-α12<kf+kg<α12
则有$f(x)+g(x)∈{M_{{α_1}+{α_2}}}$,
故选C.

点评 本题考查了函数的性质的判断与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.某地市高三理科学生有15000名,在-次调研测试中,数学成绩ξ服从正态分布N(100,σ2),已知P(80<ξ≤100)=0.40,若按成绩分层抽样的方式取100份试卷进行分析,则应从120分以上的试卷中抽取10份.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等差数列{an}的通项为an=2n-1,其前n项和为Sn,若Sm是am,am+1的等差中项,则m的值为(  )
A.1B.2C.4D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若tanα=$\frac{1}{4}$,则tan($\frac{π}{4}$-α)=$\frac{3}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知集合A={x|x2-x<0},B=(0,a)(a>0),若A⊆B,则实数a的取值范围是a≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数y=cos2x,x∈[0,π]的递增区间为[$\frac{π}{2}$,π].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.将函数f(x)=$\sqrt{3}$cosx-sinx的图象向右平移θ个单位后得到的图象关于直线$x=\frac{π}{6}$对称,则θ的最小正值为$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.($\frac{2}{\sqrt{x}}$-$\frac{\sqrt{x}}{3}$)6展开式中的第2项是-$\frac{{2}^{6}}{{x}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若函数y=f(x)在(0,2)上是增函数,且y=f(x+2)图象关于y轴对称,设a=f($\frac{π}{3}$),b=f($\frac{3π}{4}$),c=f(π),则a,b,c的由大到小顺序为b>a>c.

查看答案和解析>>

同步练习册答案