精英家教网 > 高中数学 > 题目详情
8.若tanα=$\frac{1}{4}$,则tan($\frac{π}{4}$-α)=$\frac{3}{5}$.

分析 由条件利用两角和差的正切公式,求得tan($\frac{π}{4}$-α)的值.

解答 解:∵tanα=$\frac{1}{4}$,则tan($\frac{π}{4}$-α)=$\frac{1-tanα}{1+tanα}$=$\frac{1-\frac{1}{4}}{1+\frac{1}{4}}$=$\frac{3}{5}$,
故答案为:$\frac{3}{5}$.

点评 本题主要考查两角和差的正切公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设点(a,b)是区域$\left\{\begin{array}{l}x+y-4≤0\\ x>0\\ y>0\end{array}$内的任意一点,则使函数f(x)=ax2-2bx+3在区间[$\frac{1}{2}$,+∞)上是增函数的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了得到函数的图象y=sin3x,只需把函数y=sin(3x+1)的图象上所有的点(  )
A.向左平移1个单位长度B.向右平移1个单位长度
C.向左平移$\frac{1}{3}$个单位长度D.向右平移$\frac{1}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若sinx=$\frac{\sqrt{5}}{5}$,则cos2x=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{3}{\sqrt{5}}$D.$\frac{3}{\sqrt{5}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求过三点A(-1,0),B(1,-2),C(1,0)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an},Sn为其前n项的和,满足Sn=$\frac{n(n+1)}{2}$.
(1)求数列{an}的通项公式;
(2)设数列{$\frac{1}{a_n}$}的前n项和为Tn,数列{Tn}的前n项和为Rn,求证:当n≥2,n∈N*时Rn-1=n(Tn-1);
(3)已知当n∈N*,且n≥6时有(1-$\frac{m}{n+3}$)n<($\frac{1}{2}$)m,其中m=1,2,…,n,求满足3n+4n+…+(n+2)n=(an+3)an的所有n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有-α(x2-x1)<f(x2)-f(x1)<α(x2-x1)成立.下列结论中正确的是(  )
A.若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈${M_{{α_1}•{α_2}}}$
B.若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则$\frac{f(x)}{g(x)}$∈${M_{\frac{α_1}{α_2}}}$
C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈${M_{{α_1}+{α_2}}}$
D.若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)-g(x)∈${M_{{α_1}-{α_2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设f(n)=(a+b)n(n∈N*,n≥2),若f(n)的展开式中,存在某连续3项,其二项式系数依次成等差数列,则称f(n)具有性质P.
(1)求证:f(7)具有性质P;
(2)若存在n≤2016,使f(n)具有性质P,求n的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.假设100个产品中有10个次品,设任取5个产品的中次品的个数为X,则X的方差为0.45.

查看答案和解析>>

同步练习册答案