精英家教网 > 高中数学 > 题目详情
11.等差数列{an}的通项为an=2n-1,其前n项和为Sn,若Sm是am,am+1的等差中项,则m的值为(  )
A.1B.2C.4D.8

分析 由等差数列知Sm=$\frac{1+2m-1}{2}$•m=m2,am=2m-1,am+1=2m+1;从而求得.

解答 解:∵等差数列{an}的通项为an=2n-1,
∴Sm=$\frac{1+2m-1}{2}$•m=m2,am=2m-1,am+1=2m+1;
∴2m-1+2m+1=2m2
解得,m=2;
故选:B.

点评 本题考查了等差数列的性质的判断与应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知等腰梯形ABCD(如图(1)所示),其中AB∥CD,E,F分別为AB和CD的中点,且AB=EF=2,CD=6,M为BC中点.现将梯形ABCD沿着EF所在直线折起,使平面EFCB⊥平面EFDA(如图(2)所示),N是线段CD上一动点,且CN=$\frac{1}{2}$ND.
(1)求证:MN∥平面 EFDA;
(2)求三棱锥A-MNF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知实数x,y满足约束条件$\left\{\begin{array}{l}x+2y≤6\\ 2x-y≤6\\ x≥0,y≥0\end{array}\right.$则x-3y>0的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{3}{4}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.为了得到函数的图象y=sin3x,只需把函数y=sin(3x+1)的图象上所有的点(  )
A.向左平移1个单位长度B.向右平移1个单位长度
C.向左平移$\frac{1}{3}$个单位长度D.向右平移$\frac{1}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知集合M={(x,y)|y=f(x)},若对于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,则称集合M是“Ω集合”.给出下列4个集合:
①M={(x,y)|y=lgx}               
②M={(x,y)|y=cosx+sinx}
③M={(x,y)|y=-$\frac{1}{x}$}               
④M={(x,y)|y=ex-3}
其中是“Ω集合”的所有序号是(  )
A.②③B.②④C.①②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若sinx=$\frac{\sqrt{5}}{5}$,则cos2x=(  )
A.-$\frac{3}{5}$B.$\frac{3}{5}$C.-$\frac{3}{\sqrt{5}}$D.$\frac{3}{\sqrt{5}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.求过三点A(-1,0),B(1,-2),C(1,0)的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.对于正实数α,记Mα是满足下列条件的函数f(x)构成的集合:对于任意的实数x1,x2∈R且x1<x2,都有-α(x2-x1)<f(x2)-f(x1)<α(x2-x1)成立.下列结论中正确的是(  )
A.若f(x)∈Mα1,g(x)∈Mα2,则f(x)•g(x)∈${M_{{α_1}•{α_2}}}$
B.若f(x)∈Mα1,g(x)∈Mα2且g(x)≠0,则$\frac{f(x)}{g(x)}$∈${M_{\frac{α_1}{α_2}}}$
C.若f(x)∈Mα1,g(x)∈Mα2,则f(x)+g(x)∈${M_{{α_1}+{α_2}}}$
D.若f(x)∈Mα1,g(x)∈Mα2且α1>α2,则f(x)-g(x)∈${M_{{α_1}-{α_2}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.设2sinx=a,则a的取值范围是[-2,2].

查看答案和解析>>

同步练习册答案