精英家教网 > 高中数学 > 题目详情
16.若直线1的倾斜角是120°,且该直线过点(1,k)和(-2,0),则k=(  )
A.-3$\sqrt{3}$B.3$\sqrt{3}$C.-$\sqrt{3}$D.$\sqrt{3}$

分析 求出直线的斜率,设出直线的方程,代入点的坐标,求出直线方程即可.

解答 解:∵倾斜角是120°,斜率是:-$\sqrt{3}$,
设直线l的方程是y=-$\sqrt{3}$x+b,
故-$\sqrt{3}$+b=k,-2$\sqrt{3}$+b=0,
解得:k=$\sqrt{3}$,
故选:D.

点评 本题考查了直线的斜率问题,考查求直线方程问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.设集合A={x|x2-2x≥0},B={x|-1<x<2},则A∩B=(  )
A.{x|0≤x≤2}B.{x|0<x<2}C.{x|-1≤x<0}D.{x|-1<x≤0}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)为奇函数,则函数$\frac{{3}^{x}-1}{{3}^{x}+1}$•f(x)为(  )
A.偶函数B.奇函数
C.既是偶函数,也是奇函数D.既非偶函数,也非奇函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.等差数列中,a2=1,a11=28,则S12=174.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在锐角三角形ABC中,∠A=$\frac{π}{4}$,AC=$\sqrt{3}$,BC=$\sqrt{2}$,BD=$\frac{3\sqrt{2}}{5}$;
(1)求∠ABC;
(2)求CD的长度;
(3)求sinD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设O为△ACB中一点,满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|=1,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,求△ACB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)=ln(x+$\sqrt{{x}^{2}+1}$)+x,则不等式f(x)+f(x2-2)>0的解集是(-∞,-2)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x是x1,x2,…,x10的平均值,a1为x1,x2,x3,x4的平均值,a2为x5,x6,x10的平均值,则x=(  )
A.$\frac{2{a}_{1}+3{a}_{2}}{5}$B.$\frac{3{a}_{1}+2{a}_{2}}{5}$C.a1+a2D.$\frac{{a}_{1}+{a}_{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.对于函数y=F(x),若在其定义域内存在x0,使得x0•F(x0)=1成立,则称x0为函数F(x)的“反比点”.已知函数f(x)=lnx,g(x)=$\frac{1}{2}{(x-1)^2}$-1
(1)求证:函数f(x)具有“反比点”,并讨论函数f(x)的“反比点”个数;
(2)若x≥1时,恒有x•f(x)≤λ(g(x)+x)成立,求λ的最小值.

查看答案和解析>>

同步练习册答案