分析 利用平方关系化正弦为余弦,然后平方求得函数的最值,并求得使函数取得最值的x的值.
解答 解:y=-sin2x+$\sqrt{3}$cosx+$\frac{5}{4}$=$co{s}^{2}x+\sqrt{3}cosx+\frac{1}{4}$=$(cosx+\frac{\sqrt{3}}{2})^{2}-\frac{1}{2}$.
∴当cosx=$-\frac{\sqrt{3}}{2}$,即x=$\frac{5π}{6}+2kπ$或x=$\frac{7π}{6}+2kπ,k∈Z$时函数有最小值$-\frac{1}{2}$;
当cosx=1,即x=2kπ,k∈Z时函数有最大值$\frac{5}{4}+\sqrt{3}$.
点评 本题考查三角函数的最值的求法,训练了利用配方法求函数的最值,是基础题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{3}}{3}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com