分析 (Ⅰ)利用已知条件列出方程组,求解可得椭圆C的方程.
(Ⅱ)方法一:由题意知直线l斜率不为0,设直线l方程为x=my+1,B(x1,y1),D(x2,y2),由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ x=my+1\end{array}\right.$消去x,得(m2+4)y2+2my-3=0,通过韦达定理,通过斜率乘积,化简推出结果.
方法二:(ⅰ)当直线l斜率不存在时,$B(1,-\frac{{\sqrt{3}}}{2})\;,\;D(1,\frac{{\sqrt{3}}}{2})$,求解即可.
(ⅱ)当直线l斜率存在时,设直线l方程为y=k(x-1),B(x1,y1),D(x2,y2)由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ y=k(x-1)\end{array}\right.$消去y,得(1+4k2)x2-8k2x+4k2-4=0,通过韦达定理,通过斜率乘积,化简推出结果.
解答 解:(Ⅰ)由题意得$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{c}{a}=\frac{{\sqrt{3}}}{2}\\ a=2\end{array}\right.$
解得$\left\{\begin{array}{l}a=2\\ b=1\\ c=\sqrt{3}\end{array}\right.$所以椭圆C的方程为$\frac{x^2}{4}+{y^2}=1$.…(4分)
(Ⅱ)方法一:由题意知直线l斜率不为0,设直线l方程为x=my+1,B(x1,y1),D(x2,y2)
由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ x=my+1\end{array}\right.$消去x,得(m2+4)y2+2my-3=0,
易知△=16m2+48>0,得${y_1}+{y_2}=\frac{-2m}{{{m^2}+4}},{y_1}{y_2}=\frac{-3}{{{m^2}+4}}$…(8分)${k_1}{k_2}=\frac{{{y_1}{y_2}}}{{({x_1}-2)({x_2}-2)}}=\frac{{{y_1}{y_2}}}{{(m{y_1}-1)(m{y_2}-1)}}=\frac{{{y_1}{y_2}}}{{{m^2}{y_1}{y_2}-m({y_1}+{y_2})+1}}$=$\frac{-3}{{-3{m^2}+2{m^2}+{m^2}+4}}=-\frac{3}{4}$.所以${k_1}{k_2}=-\frac{3}{4}$为定值…(12分)
方法二:(ⅰ)当直线l斜率不存在时,$B(1,-\frac{{\sqrt{3}}}{2})\;,\;D(1,\frac{{\sqrt{3}}}{2})$
所以${k_1}{k_2}=\frac{{-\frac{{\sqrt{3}}}{2}}}{1-2}•\frac{{\frac{{\sqrt{3}}}{2}}}{1-2}=-\frac{3}{4}$…(6分)
(ⅱ)当直线l斜率存在时,设直线l方程为y=k(x-1),B(x1,y1),D(x2,y2)
由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ y=k(x-1)\end{array}\right.$消去y,得(1+4k2)x2-8k2x+4k2-4=0,
易知△=48k2+16>0,${x_1}+{x_2}=\frac{{8{k^2}}}{{1+4{k^2}}},{x_1}{x_2}=\frac{{4{k^2}-4}}{{1+4{k^2}}}$…(8分)
${k_1}{k_2}=\frac{{{y_1}{y_2}}}{{({x_1}-2)({x_2}-2)}}=\frac{{{k^2}({x_1}-1)({x_2}-1)}}{{({x_1}-2)({x_2}-2)}}=\frac{{{k^2}[{{x_1}{x_2}-({x_1}+{x_2})+1}]}}{{{x_1}{x_2}-2({x_1}+{x_2})+4}}$=$\frac{{{k^2}(4{k^2}-4-8{k^2}+1+4{k^2})}}{{4{k^2}-4-16{k^2}+4+16{k^2}}}=-\frac{3}{4}$.
所以${k_1}{k_2}=-\frac{3}{4}$为定值…(12分)
点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 6 | C. | 8 | D. | 9 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$+1 | B. | $\sqrt{2}$ | C. | 2±$\sqrt{2}$ | D. | $\sqrt{2}$-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充要条件 | B. | 充分不必要条件 | ||
| C. | 必要不充分条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com