精英家教网 > 高中数学 > 题目详情
6.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{3}}}{2}$,右顶点为A(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)过点(1,0)的直线l交椭圆于B,D两点,设直线AB斜率为k1,直线AD斜率为k2,求证:k1k2为定值.

分析 (Ⅰ)利用已知条件列出方程组,求解可得椭圆C的方程.
(Ⅱ)方法一:由题意知直线l斜率不为0,设直线l方程为x=my+1,B(x1,y1),D(x2,y2),由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ x=my+1\end{array}\right.$消去x,得(m2+4)y2+2my-3=0,通过韦达定理,通过斜率乘积,化简推出结果.
方法二:(ⅰ)当直线l斜率不存在时,$B(1,-\frac{{\sqrt{3}}}{2})\;,\;D(1,\frac{{\sqrt{3}}}{2})$,求解即可.
(ⅱ)当直线l斜率存在时,设直线l方程为y=k(x-1),B(x1,y1),D(x2,y2)由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ y=k(x-1)\end{array}\right.$消去y,得(1+4k2)x2-8k2x+4k2-4=0,通过韦达定理,通过斜率乘积,化简推出结果.

解答 解:(Ⅰ)由题意得$\left\{\begin{array}{l}{a^2}={b^2}+{c^2}\\ \frac{c}{a}=\frac{{\sqrt{3}}}{2}\\ a=2\end{array}\right.$
解得$\left\{\begin{array}{l}a=2\\ b=1\\ c=\sqrt{3}\end{array}\right.$所以椭圆C的方程为$\frac{x^2}{4}+{y^2}=1$.…(4分)
(Ⅱ)方法一:由题意知直线l斜率不为0,设直线l方程为x=my+1,B(x1,y1),D(x2,y2
由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ x=my+1\end{array}\right.$消去x,得(m2+4)y2+2my-3=0,
易知△=16m2+48>0,得${y_1}+{y_2}=\frac{-2m}{{{m^2}+4}},{y_1}{y_2}=\frac{-3}{{{m^2}+4}}$…(8分)${k_1}{k_2}=\frac{{{y_1}{y_2}}}{{({x_1}-2)({x_2}-2)}}=\frac{{{y_1}{y_2}}}{{(m{y_1}-1)(m{y_2}-1)}}=\frac{{{y_1}{y_2}}}{{{m^2}{y_1}{y_2}-m({y_1}+{y_2})+1}}$=$\frac{-3}{{-3{m^2}+2{m^2}+{m^2}+4}}=-\frac{3}{4}$.所以${k_1}{k_2}=-\frac{3}{4}$为定值…(12分)
方法二:(ⅰ)当直线l斜率不存在时,$B(1,-\frac{{\sqrt{3}}}{2})\;,\;D(1,\frac{{\sqrt{3}}}{2})$
所以${k_1}{k_2}=\frac{{-\frac{{\sqrt{3}}}{2}}}{1-2}•\frac{{\frac{{\sqrt{3}}}{2}}}{1-2}=-\frac{3}{4}$…(6分)
(ⅱ)当直线l斜率存在时,设直线l方程为y=k(x-1),B(x1,y1),D(x2,y2
由$\left\{\begin{array}{l}\frac{x^2}{4}+{y^2}=1\\ y=k(x-1)\end{array}\right.$消去y,得(1+4k2)x2-8k2x+4k2-4=0,
易知△=48k2+16>0,${x_1}+{x_2}=\frac{{8{k^2}}}{{1+4{k^2}}},{x_1}{x_2}=\frac{{4{k^2}-4}}{{1+4{k^2}}}$…(8分)
${k_1}{k_2}=\frac{{{y_1}{y_2}}}{{({x_1}-2)({x_2}-2)}}=\frac{{{k^2}({x_1}-1)({x_2}-1)}}{{({x_1}-2)({x_2}-2)}}=\frac{{{k^2}[{{x_1}{x_2}-({x_1}+{x_2})+1}]}}{{{x_1}{x_2}-2({x_1}+{x_2})+4}}$=$\frac{{{k^2}(4{k^2}-4-8{k^2}+1+4{k^2})}}{{4{k^2}-4-16{k^2}+4+16{k^2}}}=-\frac{3}{4}$.
所以${k_1}{k_2}=-\frac{3}{4}$为定值…(12分)

点评 本题考查椭圆方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.如图,多面体EF-ABCD中,ABCD是正方形,AC、BD相交于O,EF∥AC,点E在AC上的射影恰好是线段AO的中点.
(Ⅰ)求证:BD⊥平面ACF;
(Ⅱ)若直线AE与平面ABCD所成的角为60°,求平面DEF与平面ABCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设向量$\overrightarrow{OA}$=(1,-2),$\overrightarrow{OB}$=(a,-1),$\overrightarrow{OC}$=(-b,0),其中 O 为坐标原点,b>0,若 A,B,C 三点共线,则$\frac{1}{a}$+$\frac{2}{b}$的最小值为(  )
A.4B.6C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的离心率为$\frac{{\sqrt{2}}}{2}$,其左、右焦点分别为F1,F2,点P是坐标平面内一点,且$|{\overrightarrow{OP}}|=\frac{{\sqrt{7}}}{2},\overrightarrow{P{F_1}}•{\overrightarrow{PF}_2}=\frac{3}{4}$,其中O为坐标原点.
(1)求椭圆C的方程;
(2)过点$S({0,\frac{1}{3}})$,且斜率为k的直线l交椭圆于A,B两点,在y轴上是否存在定点M,使得以AB为直径的圆恒过这个定点?若存在,求出点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,AB=2AD=2,$∠DAB=\frac{π}{3}$,PD⊥AD,PD⊥DC.
(Ⅰ)证明:平面PBC⊥平面PBD;
(Ⅱ)若二面角P-BC-D为$\frac{π}{6}$,求AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知圆 C:(x-a)2+(y-2)2=4(a>0),若倾斜角为45°的直线l过抛物线y2=-12x 的焦点,且直线l被圆C截得的弦长为2$\sqrt{3}$,则a等于(  )
A.$\sqrt{2}$+1B.$\sqrt{2}$C.2±$\sqrt{2}$D.$\sqrt{2}$-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若对于任意的实数$x∈({0,\frac{1}{2}}]$,都有2-2x-logax<0恒成立,则实数a的取值范围是$\frac{1}{4}$<a<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知抛物线C:y2=2px(p>0)与直线$x-\sqrt{2}y+4=0$相切.
(1)求该抛物线的方程;
(2)在x轴正半轴上,是否存在某个确定的点M,过该点的动直线l与抛物线C交于A,B两点,使得$\frac{1}{{|AM{|^2}}}+\frac{1}{{|BM{|^2}}}$为定值.如果存在,求出点M坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数$f(x)=\left\{{\begin{array}{l}{{e^x},x≥-1}\\{ln(-x),x<-1}\end{array}}\right.$,则“x=0”是“f(x)=1”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案