精英家教网 > 高中数学 > 题目详情

【题目】在锐角ABC中,a2_______,求ABC的周长l的范围.

在①(﹣cossin),(cossin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x)f(A)

注:这三个条件中任选一个,补充在上面问题中并对其进行求解.

【答案】lABC∈(6+26]

【解析】

选①时,由平面向量的数量积与三角恒等变换求出A的值,再利用正弦定理和三角恒等变换求出△ABC周长的取值范围;

选②时,由正弦定理和三角恒等变换求出A的值,再利用正弦定理和三角恒等变换求出△ABC周长的取值范围;

选③时,由三角恒等变换求得A的值,再利用正弦定理和三角恒等变换求出△ABC周长的取值范围.

解:若选①,则由(﹣cossin),(cossin),且

,∴cosA

A∈(0),

所以A

,所以

ABC的周长为

因为锐角△ABC中,A,所以

所以B∈(),

所以B∈(),

所以△ABC的周长为lABC∈(6+26]

若选②,由cos A(2bc)=acos C

所以2bcosAacosC+ccosA

所以2sinBcosAsinAcosC+cosAsinCsin(A+C)=sinB

B∈(0π),所以sinB≠0,所以cosA

A∈(0),所以A

,所以

ABC的周长为

因为锐角△ABC中,A,所以

所以B∈(),

所以B∈(),

所以△ABC的周长为lABC∈(6+26]

若选③,则f(x)=cos xcos(x)

cos xsin x

(cos2xsin2x)

sin(2x),

f(A),所以sin(2A)

A∈(0),所以A

,所以

ABC的周长为

因为锐角△ABC中,A,所以

所以B∈(),

所以B∈(),

所以△ABC的周长为lABC∈(6+26]

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,椭圆的左、右顶点分别为,上、下顶点分别为,且为等边三角形,过点的直线与椭圆轴右侧的部分交于两点.

1)求椭圆的标准方程;

2)求四边形面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知复数满足的虚部为2

1)求复数

2)设在复平面上对应点分别为,求的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an},等比数列{bn}满足:a1b1=1,a2b2,2a3b3=1.

(1)求数列{an},{bn}的通项公式;

(2)cnanbn求数列{cn}的前n项和Sn.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着时代的发展和社会的进步,农村淘宝发展十分迅速,促进农产品进城消费品下乡.农产品进城很好地解决了农产品与市场的对接问题,使农民收入逐步提高,生活水平得到改善,农村从事网店经营的人收入逐步提高.西凤脐橙是四川省南充市的特产,因果实呈椭圆形、色泽橙红、果面光滑、无核、果肉脆嫩化渣、汁多味浓,深受人们的喜爱.为此小王开网店销售西凤脐橙,每月月初购进西凤脐橙,每售出1吨西凤脐橙获利润800元,未售出的西凤脐橙,每1吨亏损500.经市场调研,根据以往的销售统计,得到一个月内西凤脐橙市场的需求量的频率分布直方图如图所示.小王为下一个月购进了100吨西凤脐橙,以x(单位:吨)表示下一个月内市场的需求量,y(单位:元)表示下一个月内经销西凤脐橙的销售利润.

1)将y表示为x的函数;

2)根据频率分布直方图估计小王的网店下一个月销售利润y不少于67000元的概率;

3)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率,(例如:若需求量,则取,且的概率等于需求量落入的频率),求小王的网店下一个月销售利润y的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数,设函数

1)求函数的单调区间;

2)当时,若对任意的,均有,求的取值范围.

注:为自然对数的底数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥的底面中,平面的中点,且

1)求证:∥平面

2)求二面角的余弦值;

3)在线段内是否存在点,使得?若存在指出点的位置,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面,底面是直角梯形,,点上,且

1)点上,,求证:平面

2)若直线与平面所成的角为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】新《水污染防治法》已由中华人民共和国第十二届全国人民代表大会常务委员会第二十八次会议于2017627日通过,自201811日起施行.201831日,某县某质检部门随机抽取了县域内100眼水井,检测其水质总体指标.

罗斯水质指数

02

24

46

68

810

水质状况

腐败污水

严重污染

污染

轻度污染

纯净

1)求所抽取的100眼水井水质总体指标值的样本平均数(同一组中的数据用该组区间的中点值作代表).

2)①由直方图可以认为,100眼水井水质总体指标值服从正态分布,利用该正态分布,求落在(5.215.99)内的概率;

②将频率视为概率,若某乡镇抽查5眼水井的水质,记这5眼水井水质总体指标值位于(610)内的井数为,求的分布列和数学期望.

附:①计算得所抽查的这100眼水井总体指标的标准差为

②若,则

查看答案和解析>>

同步练习册答案