精英家教网 > 高中数学 > 题目详情

【题目】如图,在四棱锥中,底面,底面是直角梯形,,点上,且

1)点上,,求证:平面

2)若直线与平面所成的角为,求二面角的余弦值.

【答案】1)详见解析;(2

【解析】

1)先证明四边形为平行四边形,得,则,又可得,即可证明平面

2)根据线面角定义找出与平面所成角,得的长度,然后建立空间直角坐标系,分别求出平面与平面的法向量,再利用向量法求出二面角的余弦值.

1)∵,∴

∵底面是直角梯形,

,即,则

,∴

∴四边形是平行四边形,则,∴

底面,∴

,∴平面

2)∵,∴平面,则为直线与平面所成的角,

,即

的中点为,连接,则,以点为坐标原点建立如图所示的空间直角坐标系

设平面的法向量,则

,令,则,∴

是平面的一个法向量,∴

即平面与平面所成锐二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数.

1)求不等式的解集;

2)若关于的不等式在实数范围内解集为空集,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在锐角ABC中,a2_______,求ABC的周长l的范围.

在①(﹣cossin),(cossin),且,②cosA(2bc)=acosC,③f(x)=cosxcos(x)f(A)

注:这三个条件中任选一个,补充在上面问题中并对其进行求解.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图两个同心球,球心均为点,其中大球与小球的表面积之比为3:1,线段是夹在两个球体之间的内弦,其中两点在小球上,两点在大球上,两内弦均不穿过小球内部.当四面体的体积达到最大值时,此时异面直线的夹角为,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,准线为上一点,直线与抛物线交于两点,若,则=

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在等腰中,分别为的中点,的中点,在线段上,且。将沿折起,使点的位置(如图2所示),且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论函数的单调性;

2)若,且存在不相等的实数,使得,求证

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于很多人来说,提前消费的认识首先是源于信用卡,在那个工资不高的年代,信用卡绝对是神器,稍微大件的东西都是可以选择用信用卡来买,甚至于分期买,然后慢慢还!现在银行贷款也是很风靡的,从房贷到车贷到一般的现金贷.信用卡忽如一夜春风来,遍布了各大小城市的大街小巷.为了解信用卡在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了100人进行抽样分析,得到如下列联表(单位:人)

经常使用信用卡

偶尔或不用信用卡

合计

40岁及以下

15

35

50

40岁以上

20

30

50

合计

35

65

100

1)根据以上数据,能否在犯错误的概率不超过0.10的前提下认为市使用信用卡情况与年龄有关?

2)①现从所抽取的40岁及以下的网民中,按经常使用偶尔或不用这两种类型进行分层抽样抽取10人,然后,再从这10人中随机选出4人赠送积分,求选出的4人中至少有3人偶尔或不用信用卡的概率;

②将频率视为概率,从市所有参与调查的40岁以上的网民中随机抽取3人赠送礼品,记其中经常使用信用卡的人数为,求随机变量的分布列、数学期望和方差.

参考公式:,其中

参考数据:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北京地铁八通线西起四惠站,东至土桥站,全长18.964km,共设13座车站.目前八通线执行2014年12月28日制订的计价标准,各站间计程票价(单位:元)如下:

四惠

3

3

3

3

4

4

4

5

5

5

5

5

四惠东

3

3

3

4

4

4

5

5

5

5

5

高碑店

3

3

3

4

4

4

4

5

5

p>5

传媒大学

3

3

3

4

4

4

4

5

5

双桥

3

3

3

4

4

4

4

4

管庄

3

3

3

3

4

4

4

八里桥

3

3

3

3

4

4

通州北苑

3

3

3

3

3

果园

3

3

3

3

九棵树

3

3

3

梨园

/p>

3

3

临河里

3

土桥

四惠

四惠东

高碑店

传媒大学

双桥

管庄

八里桥

通州北苑

果园

九棵树

梨园

临河里

土桥

(Ⅰ)在13座车站中任选两个不同的车站,求两站间票价不足5元的概率;

(Ⅱ)甲乙二人从四惠站上车乘坐八通线,各自任选另一站下车(二人可同站下车),记甲乙二人乘车购票花费之和为X元,求X的分布列;

(Ⅲ)若甲乙二人只乘坐八通线,甲从四惠站上车,任选另一站下车,记票价为元;乙从土桥站上车,任选另一站下车,记票价为元.试比较的方差大小.(结论不需要证明)

查看答案和解析>>

同步练习册答案