精英家教网 > 高中数学 > 题目详情
7.焦点在x轴上的双曲线的两条渐进线方程为:$y=±\frac{3}{4}x$,则该双曲线的离心率e=(  )
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\frac{4}{3}$D.$\frac{4}{5}$

分析 由题意可得$\frac{b}{a}$=$\frac{3}{4}$,再由双曲线的离心率为 e=$\sqrt{1+(\frac{b}{a})^{2}}$,运算求得结果.

解答 解:根据焦点在x轴上的双曲线的渐近线方程是:$y=±\frac{3}{4}x$,可得$\frac{b}{a}$=$\frac{3}{4}$,
则该双曲线的离心率为 e=$\sqrt{1+(\frac{b}{a})^{2}}$=$\frac{5}{4}$,
故选A.

点评 本题主要考查双曲线的简单性质的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow{a}$=(k,3),$\overrightarrow{b}$=(1,4),若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数k为(  )
A.-12B.12C.$\frac{4}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A、B、C所对的边分别为a,b,c,sinC-sinA(cosB+$\frac{{\sqrt{3}}}{3}sinB$)=0
(1)求A;
(2)若$a=4\sqrt{3}$,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若-$\frac{π}{8}$<θ<0,则sinθ,cosθ,tanθ的大小关系为(  )
A.sinθ<tanθ<cosθB.tanθ<sinθ<cosθC.tanθ<cosθ<sinθD.sinθ<cosθ<tanθ

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=1+2sinxcosx+2cos2x.
(1)求f(x)递增区间;      
(2)求f(x)的对称轴方程;
(3)求f(x)的最大值并写出取最大值时自变量x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某工厂生产某种零件,每个零件成本为40元,出厂单价为70元.该厂为了鼓励销售商订购,决定当一次订购量超过100个时,每多订一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂价不能低于61元.
(1)设订购量为x个时,零件的实际出厂单价为y元,写出函数y=f(x)的函数解析式;
(2)当销售商一次订购500个时,该厂获得的利润是多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求适合下列条件的椭圆的标准方程
(1)焦点在x轴上,焦距为4,并且经过点P(3,$-2\sqrt{6}$)
(2)焦距为8,离心率为0.8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.给定两个命题p:函数y=x2+8ax+1在[-1,1]上单调递增;q:方程$\frac{x^2}{a+2}+\frac{y^2}{a-1}$=1表示双曲线,如果命题“p∧q”为假命题,“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义符号函数为sgn(x)=$\left\{\begin{array}{l}{1,x>0}\\{0,x=0}\\{-1,x<0}\end{array}\right.$,则下列命题:
①|x|=x•sgn(x);
②关于x的方程lnx•sgn(lnx)=sinx•sgn(sinx)有5个实数根;
③若lna•sgn(lna)=lnb•sgn(lnb)(a>b),则a+b的取值范围是(2,+∞);
④设f(x)=(x2-1)•sgn(x2-1),若函数g(x)=f2(x)+af(x)+1有6个零点,则a<-2.
正确的有(  )
A.0个B.1个C.2个D.3个

查看答案和解析>>

同步练习册答案