精英家教网 > 高中数学 > 题目详情
已知向量
m
=(2
3
sin
x
4
,2),向量
n
=(cos
x
4
,cos2a),若
m
n
=2
,求cos(x+
π
3
).
考点:平面向量数量积的运算
专题:计算题,三角函数的求值,平面向量及应用
分析:运用向量的数量积的坐标公式和二倍角公式及两角和的正弦公式,化简即可得到所求值.
解答: 解:由于向量
m
=(2
3
sin
x
4
,2),向量
n
=(cos
x
4
,cos2
x
4
),
m
n
=2
,则2
3
sin
x
4
cos
x
4
+2cos2
x
4
=2,
3
sin
x
2
+cos
x
2
=1,
即有sin(
x
2
+
π
6
)=
1
2

则cos(x+
π
3
)=1-2sin2
x
2
+
π
6

=1-2×
1
4
=
1
2
点评:本题考查平面向量的数量积的坐标公式,考查三角函数的化简和求值,考查二倍角公式和两角和的正弦公式的运用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若集合A={x||x+3|>2},B={x|x2-4≤0},求AUB.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
a
-
1
x
(a>0,x>0)
(1)求证:f(x)在(0,+∞)上是增函数;
(2)若f(x)在[m,n]上的值域是[m,n](m≠n),求实数a的取值范围;
(3)若f(x)≤2x在(0,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆C1:x2+y2+2mx-2(2m-1)y+4m2-4m=0,圆C2:(x-1)2+(y+1)2=4.
(1)若圆C1始终平分圆C2的周长,求m;
(2)求圆C1的圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在正方形ABCD-A′B′C′D′中,棱长为1,求证:平面AB′C⊥平面BB′D′D.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l过点(m,l),(m+1,tanα+1),则(  )
A、α一定是直线l的倾斜角
B、α一定不是直线l的倾斜角
C、α不一定是直线l的倾斜角
D、180°-α一定是直线l的倾斜角

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
1-2cosx
+lg(2sinx-
2
)的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
π
7
+cos
7
+cos
7
+cos
7
+cos
7
+cos
7
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
ax
x2+1
+a
,g(x)=alnx-x(a≠0).
(1)a>0时,求函数f(x)的单调区间;
(2)求证:当a>0时,对于任意x1,x2∈(0,e],总有g(x1)<f(x2)成立.

查看答案和解析>>

同步练习册答案