精英家教网 > 高中数学 > 题目详情
13.已知(1+x)n(n∈N*)的展开式中第3项与第8项的二项式系数相等,则这两项的二项式系数为(  )
A.36B.45C.55D.120

分析 直接利用二项式定理的形式的性质,列出方程求解即可.

解答 解:(1+x)n(n∈N*)的展开式中第3项与第8项的二项式系数相等,
可得${C}_{n}^{2}={C}_{n}^{7}$,
解得n=9.
这两项的二项式系数为:${C}_{9}^{2}$=36.
故选:A.

点评 本题考查二项式定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex,g(x)=x+a,a∈R.
(1)若曲线f(x)=ex与g(x)=x+a相切,求实数a的值;
(2)记h(x)=f(x)g(x),求h(x)在[0,1]上的最小值;
(3)当a=0时,试比较ef(x-2)与g(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一个空间几何体的三视图(俯视图外框为正方形),则这个几何体的体积为48-3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin(ωx+φ)的单调增区间为$[kπ-\frac{π}{12}$,kπ+$\frac{5π}{12}]$(k∈Z),则函数f(x)在区间$[0,\frac{π}{2}]$的取值范围是(  )
A.$[-\frac{{\sqrt{3}}}{2},1]$B.$[-\frac{1}{2},\frac{{\sqrt{3}}}{2}]$C.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$D.$[-\frac{1}{2},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设点C(x,y)是平面直角坐标系的动点,M(2,0),以C为圆心,CM为半径的圆交y轴于A,B两点,弦AB的长|AB|=4.
(Ⅰ)求点C的轨迹方程;
(Ⅱ)过点F(1,0)作互相垂直的两条直线l1,l2,分别交曲线C于点P、Q和点K、L.设线段PQ,KL的中点分别为R、T,求证:直线RT恒过一个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.边长为2的正方形ABCD,对角线的交点为E,则($\overrightarrow{AB}$+$\overrightarrow{AC}$)•$\overrightarrow{AE}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知2cosx+sinx=1时,求$\frac{cosx-sinx}{cosx+sinx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,它的顶点构成的四边形面积为4.过点(m,0)作x2+y2=b2的切线l交椭圆C于A、B两点.
(1)求椭圆C的方程;
(2)设O为坐标原点,求△OAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.某单位举办抽奖活动,已知抽奖盒中装有“天府卡”和“熊猫卡”共10张.其中.天府卡”比“熊猫卡”数量多.抽奖规则是:参与者随机从盒中同时抽取两张卡片就完成一次抽奖,抽后放回.若抽到两张“熊猫卡,即可获奖,否则不获奖.已知一次抽奖中,抽到“天府卡”和“熊猫卡”各一张的概率是$\frac{7}{15}$.
(Ⅰ)求某人抽奖一次就中奖的概率;
(Ⅱ)现有3个人各抽奖一次,用X表示获奖的人数,求X的分布列及数学期望.

查看答案和解析>>

同步练习册答案