精英家教网 > 高中数学 > 题目详情
5.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PB⊥平面DEF;
(2)若AD=2DC,求直线BE与平面PAD所成角的正弦值.

分析 (1)由PD⊥底面ABCD得PD⊥DC,再由DC⊥BC证出BC⊥平面PDC,即得BC⊥DE,再由ABCD是正方形证出DE⊥平面PBC,则有DE⊥PB,再由条件证出PB⊥平面EFD;
(2)取AB中点G,PD中点H,连接EH,HG,连接AH,确定∠GHA为所求直线BE与平面PAD所成的角即可.

解答 (1)证明:∵PD⊥底面ABCD,且DC?底面ABCD,∴PD⊥BC.
∵底面ABCD是正方形,∴DC⊥BC,
∴BC⊥平面PDC.∵DE?平面PDC,∴BC⊥DE.
又∵PD=DC,E是PC的中点,∴DE⊥PC.∴DE⊥平面PBC.
∵PB?平面PBC,∴DE⊥PB.又∵EF⊥PB,且DE∩EF=E,
∴PB⊥平面EFD…(8分)
(2)解:取AB中点G,PD中点H,连接EH,HG,连接AH.
∵E是PC中点,
∴$EH∥CD,EH=\frac{1}{2}CD$,
∴EBGH为平行四边形,…(9分)
∵PD⊥平面ABCD,
∴平面PAD⊥平面ABCD,
∴AB⊥平面PAD连接AH,…(10分)
∴∠GHA为所求直线BE与平面PAD所成的角.…(13分)
∵AD=2DC,
∴在Rt△ADH中,AH=$\frac{\sqrt{17}}{2}$DC …(14分)
∴在Rt△AGH中,AG=$\frac{3\sqrt{2}}{2}$CD,
∴sin∠GHA=$\frac{AG}{HG}$=$\frac{\sqrt{2}}{6}$.…(15分)

点评 本题考查了线线、线面平行的相互转化,通过中位线证明线线平行,再由线面平行的判定得到线面平行;考查直线BE与平面PAD所成角的正弦值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.若将函数f(x)=|sin(ωx-$\frac{π}{6}$)|(ω>0)的图象向左平移$\frac{π}{9}$个单位后,所得图象对应的函数为偶函数,则实数ω的最小值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sinπx和函数g(x)=cosπx在区间[0,2]上的图象交于A,B两点,则△OAB面积是(  )
A.$\frac{3\sqrt{2}}{8}$B.$\frac{\sqrt{2}}{2}$C.$\frac{5\sqrt{2}}{8}$D.$\frac{3\sqrt{2}}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知四边形ABCD中,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.当∠MBN绕B点旋转到AE=CF时(如图1),易证AE+CF=EF;

(1)当∠MBN绕B点旋转到AE≠CF时,在图2的情况下,上述结论是否成立?若成立,请给予证明;
(2)在图3的情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE,CF,EF又有怎样的数量关系?请写出你的猜想,不需证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.Rt△ABC中,∠C=90°,CD⊥AB,AD为圆O的直径,圆O与AC交于E,求证:$\frac{AE}{CE}$=$\frac{A{C}^{2}}{B{C}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1+lnx}{x}$.
(Ⅰ)求函数f(x)在x=1处的切线方程.
(Ⅱ)若a为实数,函数f(x)在区间(a,a+1)上的有极值,求a的取值范围;
(Ⅲ)试问是否存在k,b∈N,使得ex>kx+b>f(x)恒成立?若存在,请写出k,b的值,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=$\frac{1}{x+2}$-k|x|({k∈R})有三个不同的零点,则实数k的取值范围是(  )
A.(0,1)B.(0,2)C.(1,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源:2017届河南商丘第一高级中学年高三上理开学摸底数学试卷(解析版) 题型:解答题

中,角所对的边分别为,且

(1)若,求

(2)若,且的面积为,求的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的上顶点为(0,1),且离心率为$\frac{\sqrt{3}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)证明:过椭圆C1:$\frac{{x}^{2}}{{m}^{2}}$+$\frac{{y}^{2}}{{n}^{2}}$=1(m>n>0)上一点Q(x0,y0)的切线方程为$\frac{{x}_{0}x}{{m}^{2}}$+$\frac{{y}_{0}y}{{n}^{2}}$=1;
(Ⅲ)过圆x2+y2=16上一点P向椭圆C引两条切线,切点分别为A,B,当直线AB分别与x轴、y轴交于M,N两点时,求|MN|的最小值.

查看答案和解析>>

同步练习册答案