分析 (Ⅰ)由条件利用三角恒等变换化简f(x)的解析式,再利用正弦函数的周期性、最值,得出结论.
(Ⅱ)由条件求得sin(2α-$\frac{π}{4}$)=1,再根据2α-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{3π}{4}$);可得2α-$\frac{π}{4}$=$\frac{π}{2}$,从而求得α的值.
解答 解:(Ⅰ)∵函数$f(x)=sinxcosx+{sin^2}x-\frac{1}{2}$=$\frac{1}{2}$sin2x+$\frac{1-cos2x}{2}$-$\frac{1}{2}$=$\frac{\sqrt{2}}{2}$sin(2x-$\frac{π}{4}$),
∴f(x)的最小正周期为$\frac{2π}{2}$=π,函数的最大值为$\frac{\sqrt{2}}{2}$.
(Ⅱ)若$α∈(0,\;\frac{π}{2})$,2α-$\frac{π}{4}$∈(-$\frac{π}{4}$,$\frac{3π}{4}$);∵$f(α)=\frac{{\sqrt{2}}}{2}$=$\frac{\sqrt{2}}{2}$sin(2α-$\frac{π}{4}$),
∴sin(2α-$\frac{π}{4}$)=1,∴2α-$\frac{π}{4}$=$\frac{π}{2}$,∴α=$\frac{3π}{8}$.
点评 本题主要考查三角恒等变换,正弦函数的周期性、最值,根据三角函数的值求角,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{3}{8}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若方程②③都有实根则方程①无实根 | |
| B. | 若方程②③都有实根则方程①有实根 | |
| C. | 若方程②无实根但方程③有实根时,则方程①无实根 | |
| D. | 若方程②无实根但方程③有实根时,则方程①有实根 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<-1或x>-ln3} | B. | {x|-1<x<-ln3} | C. | {x|x>-ln3} | D. | {x|x<-ln3} |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {0,1,2} | C. | (-1,3) | D. | {-1,0,1,2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com