2£®¼Ç·½³Ì¢Ùx2+a1x+1=0£¬¢Úx2+a2x+1=0£¬¢Ûx2+a3x+1=0£¬ÆäÖÐa1£¬a2£¬a3ÊÇÕýʵÊý£¬µ±a1£¬a2£¬a3³ÉµÈ±ÈÊýÁУ¬ÏÂÁÐÑ¡ÏîÖУ¬ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èô·½³Ì¢Ú¢Û¶¼ÓÐʵ¸ùÔò·½³Ì¢ÙÎÞʵ¸ù
B£®Èô·½³Ì¢Ú¢Û¶¼ÓÐʵ¸ùÔò·½³Ì¢ÙÓÐʵ¸ù
C£®Èô·½³Ì¢ÚÎÞʵ¸ùµ«·½³Ì¢ÛÓÐʵ¸ùʱ£¬Ôò·½³Ì¢ÙÎÞʵ¸ù
D£®Èô·½³Ì¢ÚÎÞʵ¸ùµ«·½³Ì¢ÛÓÐʵ¸ùʱ£¬Ôò·½³Ì¢ÙÓÐʵ¸ù

·ÖÎö ÓÉÒÑÖªÌõ¼þÀûÓõȱÈÊýÁеÄÐÔÖʺÍÒ»Ôª¶þ´Î·½³ÌµÄ¸ùµÄÅбðʽÇó½â£®

½â´ð ½â£ºÓÉ·½³Ì¢Ùx2+a1x+1=0£¬¢Úx2+a2x+1=0£¬¢Ûx2+a3x+1=0£¬
ÆäÖÐa1£¬a2£¬a3ÊÇÕýʵÊý£¬a1£¬a2£¬a3³ÉµÈ±ÈÊýÁУ¬Öª£º
ÔÚAÖУ¬Èô·½³Ì¢Ú¢Û¶¼ÓÐʵ¸ù£¬Ôò$\left\{\begin{array}{l}{{{a}_{2}}^{2}¡Ý4}\\{{{a}_{3}}^{2}¡Ý4}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{{a}_{2}¡Ý2}\\{{a}_{3}¡Ý2}\\{{{a}_{2}}^{2}={a}_{1}{a}_{3}}\end{array}\right.$£¬
¡à${a}_{1}=\frac{{{a}_{2}}^{2}}{{a}_{3}}$ÓпÉÄܲ»Ð¡ÓÚ2£¬¡à·½³Ì¢ÙÓпÉÄÜÓÐʵ¸ù£¬¹ÊA´íÎó£»
ÔÚBÖУ¬Èô·½³Ì¢Ú¢Û¶¼ÓÐʵ¸ù£¬Ôò$\left\{\begin{array}{l}{{{a}_{2}}^{2}¡Ý4}\\{{{a}_{3}}^{2}¡Ý4}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{{a}_{2}¡Ý2}\\{{a}_{3}¡Ý2}\\{{{a}_{2}}^{2}={a}_{1}{a}_{3}}\end{array}\right.$£¬
¡à${a}_{1}=\frac{{{a}_{2}}^{2}}{{a}_{3}}$ÓпÉÄÜСÓÚ2£¬¡à·½³Ì¢Ù¿ÉÄÜÎÞʵ¸ù£¬¹ÊB´íÎó£»
ÔÚCÖУ¬Èô·½³Ì¢ÚÎÞʵ¸ùµ«·½³Ì¢ÛÓÐʵ¸ù£¬Ôò$\left\{\begin{array}{l}{{{a}_{2}}^{2}£¼4}\\{{{a}_{3}}^{2}£¾4}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{{a}_{2}£¼2}\\{{a}_{3}£¾2}\\{{{a}_{2}}^{2}={a}_{1}{a}_{3}}\end{array}\right.$£¬
¡à${a}_{1}=\frac{{{a}_{2}}^{2}}{{a}_{3}}$£¼2£¬¡à·½³Ì¢ÙÎÞʵ¸ù£¬¹ÊCÕýÈ·£»
ÔÚDÖУ¬Èô·½³Ì¢ÚÎÞʵ¸ùµ«·½³Ì¢ÛÓÐʵ¸ù£¬Ôò$\left\{\begin{array}{l}{{{a}_{2}}^{2}£¼4}\\{{{a}_{3}}^{2}£¾4}\end{array}\right.$£¬¡à$\left\{\begin{array}{l}{{a}_{2}£¼2}\\{{a}_{3}£¾2}\\{{{a}_{2}}^{2}={a}_{1}{a}_{3}}\end{array}\right.$£¬
¡à${a}_{1}=\frac{{{a}_{2}}^{2}}{{a}_{3}}$£¼2£¬¡à·½³Ì¢ÙÎÞʵ¸ù£¬¹ÊD´íÎó£®
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éÃüÌâÕæ¼ÙµÄÅжϣ¬ÊÇ»ù´¡Ì⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒâµÈ±ÈÊýÁеÄÐÔÖʺÍÒ»Ôª¶þ´Î·½³ÌµÄ¸ùµÄÅбðʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚ¡÷ABCÖУ¬E¡¢F·Ö±ðÊÇAC£¬ABµÄÖе㣬ÇÒ3AB=2AC£¬Ôò$\frac{BE}{CF}$µÄȡֵ·¶Î§Îª$£¨\frac{1}{4}£¬\frac{7}{8}£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÉèÊýÁÐ{an}ÊǵĵȲîÊýÁУ¬SnΪÆäǰnÏîºÍ£®ÈôS6=8S3£¬a3-a5=8£¬Ôòa20=£¨¡¡¡¡£©
A£®4B£®36C£®-74D£®80

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èôx£¬yÂú×ãÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x-5¡Ü0}\\{y-3¡Ý0}\\{y¡Üx+1}\\{\;}\end{array}\right.$£¬ÔòÄ¿±êº¯Êýz=-x+yµÄ×îСֵΪ£¨¡¡¡¡£©
A£®-2B£®-1C£®1D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Èô¸´ÊýzÂú×ãz•£¨i-2£©=5£¬£¨iÊÇÐéÊýµ¥Î»£©£¬Ôò$\overline z$ÔÚ¸´Æ½ÃæÄÚËù¶ÔÓ¦µÄµãλÓÚ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êý$f£¨x£©=sinxcosx+{sin^2}x-\frac{1}{2}$£®
£¨¢ñ£©Çóf£¨x£©µÄ×îСÕýÖÜÆÚºÍ×î´óÖµ£»
£¨¢ò£©Èô$¦Á¡Ê£¨0£¬\;\frac{¦Ð}{2}£©$£¬ÇÒ$f£¨¦Á£©=\frac{{\sqrt{2}}}{2}$£¬Çó¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®Éè$z=\frac{2}{1+i}$£¬ÆäÖÐiΪÐéÊýµ¥Î»£¬Ôòz2=£¨¡¡¡¡£©
A£®2B£®$\sqrt{2}$C£®2iD£®-2i

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÉèiÊÇÐéÊýµ¥Î»£¬¸´Êý$z=1+\frac{1-i}{1+i}$ÔÚ¸´Æ½ÃæÉÏËù±íʾµÄµãΪ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞB£®µÚ¶þÏóÏÞC£®µÚÈýÏóÏÞD£®µÚËÄÏóÏÞ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èôx£¬y Âú×ã$\left\{\begin{array}{l}x-y+2¡Ý0\\ x+y-4¡Ü0\\ y¡Ý0\end{array}$£¬Ôòz=$\frac{1}{2}$x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®$\frac{5}{2}$B£®3C£®$\frac{7}{2}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸