分析 设AB=c,AC=b,BC=a,利用中线长定理可得:${c}^{2}+{a}^{2}=2B{E}^{2}+\frac{{b}^{2}}{2}$,b2+a2=2CF2+$\frac{{c}^{2}}{2}$,由于3c=2b.可得$\frac{B{E}^{2}}{C{F}^{2}}$=$\frac{{a}^{2}-\frac{{b}^{2}}{18}}{{a}^{2}+\frac{7}{9}{b}^{2}}$=$\frac{135}{126+98(\frac{b}{a})^{2}}$-$\frac{1}{14}$,利用三角形三边大小关系可得:a<b+c,且a+c>b,即可得出.
解答 解:设AB=c,AC=b,BC=a,
∵E、F分别是AC,AB的中点,
∴${c}^{2}+{a}^{2}=2B{E}^{2}+\frac{{b}^{2}}{2}$,b2+a2=2CF2+$\frac{{c}^{2}}{2}$,
∵3AB=2AC,即3c=2b.
∴2BE2=${a}^{2}-\frac{{b}^{2}}{18}$,
2CF2=a2+$\frac{7}{9}{b}^{2}$.
∴$\frac{B{E}^{2}}{C{F}^{2}}$=$\frac{{a}^{2}-\frac{{b}^{2}}{18}}{{a}^{2}+\frac{7}{9}{b}^{2}}$=$\frac{18-(\frac{b}{a})^{2}}{18+14(\frac{b}{a})^{2}}$=$\frac{135}{126+98(\frac{b}{a})^{2}}$-$\frac{1}{14}$,
∵a<b+c,且a+c>b,
∴$\frac{b}{a}$>$\frac{3}{5}$,且$\frac{b}{a}$<3.
∴$\frac{9}{25}$<$(\frac{b}{a})^{2}$<9.
∴$\frac{B{E}^{2}}{C{F}^{2}}$∈$(\frac{1}{16},\frac{49}{64})$.
∴$\frac{BE}{CF}$∈$(\frac{1}{4},\frac{7}{8})$.
故答案为:$(\frac{1}{4},\frac{7}{8})$.
点评 本题考查了余弦定理、中线长定理、三角形三边大小关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{4}{3}$ | B. | 3 | C. | $\frac{8}{3}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{1}{4}$] | B. | [$\frac{1}{4}$,1) | C. | (0,$\frac{1}{2}$] | D. | [$\frac{1}{4}$,$\frac{1}{2}$]∪(1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若方程②③都有实根则方程①无实根 | |
| B. | 若方程②③都有实根则方程①有实根 | |
| C. | 若方程②无实根但方程③有实根时,则方程①无实根 | |
| D. | 若方程②无实根但方程③有实根时,则方程①有实根 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com