分析 由二阶行列式性质得a2+b2-c2=ab,由此利用余弦定理求出cosC=$\frac{1}{2}$,从而能求出角C的大小.
解答 解:∵△ABC的内角A、B、C所对应边的长度分别为a、b、c,$|{\begin{array}{l}a&c\\ c&a\end{array}}|=|{\begin{array}{l}{-b}&{-a}\\ b&b\end{array}}|$,
∴a2-c2=-b2+ab,即a2+b2-c2=ab,
∴cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{ab}{2ab}$=$\frac{1}{2}$,
∵C是△ABC的内角,∴C=$\frac{π}{3}$.
故答案为:$\frac{π}{3}$.
点评 本题考查角的大小的求法,是基础题,解题时要认真审题,注意行列式性质及余弦定理的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 0 | C. | -4 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2}{3}$ | B. | -$\frac{3}{2}$ | C. | $\frac{3}{2}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(x)=ln($\sqrt{1+{x}^{2}}$-x) | B. | f(x)=cos2(x-$\frac{π}{4}$) | C. | f(x)=$\frac{x}{{x}^{2}+1}$ | D. | f(x)=$\frac{1}{{2}^{x}-1}$+$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com