精英家教网 > 高中数学 > 题目详情
15.用五点法画函数f(x)=2sin2x在长度为一个周期的闭区间上的简图.
x
2x0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)=2sin2x

分析 根据“五点法”即可画出函数在长度为一个周期的闭区间上的简图.

解答 解:①列表:

x0$\frac{π}{4}$$\frac{π}{2}$$\frac{3π}{4}$π
2x0$\frac{π}{2}$π$\frac{3π}{2}$
f(x)=2sin2x020-20
②在坐标系中描出以上五点,
③用光滑的曲线连接这五点,得所要求作的函数图象如下:

点评 本题主要考查三角函数的图象和性质,要求熟练掌握五点法作图以及函数图象之间的变化关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知二次函数f(x)=ax2+bx+c(a≠0).
(1)若f(-1)=0,试判断函数f(x)的零点个数;
(2)若对任意的x1,x2 ∈R.且x1<x2 ,f(x1)≠f(x2),试证明存在x0∈(x1,x2 ),使得f(x0)=$\frac{1}{2}$[f(x1)+f(x2)]成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.等比数列{an}中,a1,a79为方程x2-10x+16=0的两根,则$\frac{{a}_{30}•{a}_{40}•{a}_{50}}{2}$的值为(  )
A.32B.16C.±32D.±64

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}的前n项和为Sn,且Sn=n2+1,则下列结论正确的是(  )
A.an=2n-1B.an=2n+1C.an=$\left\{{\begin{array}{l}{2(n=1)}\\{2n-1(n>1)}\end{array}}\right.$D.an=$\left\{{\begin{array}{l}{2(n=1)}\\{2n+1(n>1)}\end{array}}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知0<a<1,b<-1,则函数y=ax+b的图象必定不经过第一象限.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.sin75°cos105°-sin105°sin15°的值等于-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)是定义在R上的奇函数,f(1)=0,当x>0时,有$\frac{xf'(x)-f(x)}{x^2}>0$成立,则不等式x•f(x)>0的解集是(  )
A.(-∞,-1)∪(1,+∞)B.(-1,0)∪(0,1)C.(1,+∞)D.(-1,0)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在△ABC中,根据下列条件解三角形:
(1)c=$\sqrt{6}$,A=45°,a=2:
(2)c=$\sqrt{2}$,A=45°,a=2:
(3)c=3,A=45°,a=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若O为△ABC所在平面内一点,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+7$\overrightarrow{OC}$=$\overrightarrow{0}$,则△OAB和△ABC的面积之比为(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{5}$

查看答案和解析>>

同步练习册答案