【题目】已知函数
(
,
).
(1)若
,且
在
内有且只有一个零点,求
的值;
(2)若
,且
有三个不同零点,问是否存在实数
使得这三个零点成等差数列?若存在,求出
的值,若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】下列说法正确的是( )
A.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一、二、三、四年级本科生人数之比为6:5:5:4,则应从一年级中抽取90名学生
B.10件产品中有7件正品,3件次品,从中任取4件,则恰好取到1件次品的概率为![]()
C.已知变量x与y正相关,且由观测数据算得
=3,
=3.5,则由该观测数据算得的线性回归方程可能是
=0.4x+2.3
D.从装有2个红球和2个黑球的口袋内任取2个球,至少有一个黑球与至少有一个红球是两个互斥而不对立的事件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设各项均为正数的数列
的前n项和为
,已知
,且
,对一切
都成立.
(1)当
时,证明数列
是常数列,并求数列
的通项公式;
(2)是否存在实数
,使数列
是等差数列?若存在,求出
的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,
是圆O的直径,点C是圆O上异于A,B的点,直线
平面
,E,F分别是
,
的中点.
![]()
(1)记平面
与平面
的交线为l,试判断直线l与平面
的位置关系,并加以证明;
(2)设
,求二面角
大小的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
,
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,点
为
上的动点,
为
的中点.
(1)请求出
点轨迹
的直角坐标方程;
(2)设点
的极坐标为
若直线
经过点
且与曲线
交于点
,弦
的中点为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线
的焦点为
,
为坐标原点,过点
的直线
与
交于
、
两点.
(1)若直线
与圆
相切,求直线
的方程;
(2)若直线
与
轴的交点为
,且
,
,试探究:
是否为定值.若为定值,求出该定值,若不为定值,试说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
,
.以坐标原点为极点,
轴正半轴为极轴建立极坐标系,已知曲线
的极坐标方程为
,点
为
上的动点,
为
的中点.
(1)请求出
点轨迹
的直角坐标方程;
(2)设点
的极坐标为
若直线
经过点
且与曲线
交于点
,弦
的中点为
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】农历五月初五是端午节,民间有吃粽子的习惯,粽子又称粽籺,俗称粽子,古称“角黍”,是端午节大家都会品尝的食品,传说这是为了纪念战国时期的楚国大臣、爱国主义诗人屈原.如图,平行四边形形状的纸片是由六个边长为2的正三角形组成的,将它沿虚线对折起来,可以得到如图所示粽子形状的六面体,则该六面体的体积为______________
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com