分析 Sn=1-($\frac{1}{2}$)n,n=1时,a1=S1=$\frac{1}{2}$.n≥2时,an=Sn-Sn-1,即可得出.
解答 解:∵Sn=1-($\frac{1}{2}$)n,∴n=1时,a1=S1=1$-\frac{1}{2}$=$\frac{1}{2}$.
n≥2时,an=Sn-Sn-1=1-($\frac{1}{2}$)n-$[1-(\frac{1}{2})^{n-1}]$=$(\frac{1}{2})^{n}$,n=1时也成立,
则an=$(\frac{1}{2})^{n}$.
故答案为:$(\frac{1}{2})^{n}$.
点评 本题考查了递推关系,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1 | B. | $\frac{{x}^{2}}{4}$-y2=1 | C. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1 | D. | x2-$\frac{{y}^{2}}{4}$=1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{2\sqrt{3}}}{3}$ | B. | $\frac{{3\sqrt{5}}}{5}$ | C. | $\frac{{3\sqrt{2}}}{2}$ | D. | $\frac{9}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 117级 | B. | 112级 | C. | 118级 | D. | 110级 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com