精英家教网 > 高中数学 > 题目详情
10.实数x,y满足(x-3)2+(y-3)2=1.则$\sqrt{{x}^{2}+{y}^{2}+2y}$的最小值是$\sqrt{15}$.

分析 确定方程(x-3)2+(y-3)2=1的几何意义,$\sqrt{{x}^{2}+{y}^{2}+2y}$的几何意义,即可求得结论.

解答 解:方程(x-3)2+(y-3)2=1表示以(3,3)为圆心,1为半径的圆,
要求$\sqrt{{x}^{2}+{y}^{2}+2y}$=$\sqrt{{x}^{2}+(y+1)^{2}-1}$的最小值,求出x2+(y+1)2的最小值即可
x2+(y+1)2表示圆上的点到(0,-1)距离的平方.
∵圆心到(0,-1)的距离为$\sqrt{9+16}$=5,
∴x2+(y+1)2的最小值为(5-1)2=16
∴$\sqrt{{x}^{2}+{y}^{2}+2y}$的最小值为$\sqrt{15}$.
故答案为:$\sqrt{15}$.

点评 本题考查距离公式的运用,考查圆的方程的几何意义,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知离心率为$\frac{1}{2}$的椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)左、右两个焦点分别为F1,F2,点(1,$\frac{3}{2}$)在椭圆C上
(1)求椭圆C的标准方程;
(2)O为坐标原点,A为椭圆C上顶点,直线F1A上有一动点P,求|$\overrightarrow{P{F}_{2}}$|+|$\overrightarrow{PO}$|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=ax3+bx2+b2x,在x=1处有极大值$\frac{1}{3}$,则b=(  )
A.-1B.$\frac{1}{2}$C.$\frac{1}{2}$或-1D.-$\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=a$\sqrt{x}$-$\frac{{x}^{2}}{{e}^{x}}$(x>0),其中e为自然对数的底数.
(1)当a=0时,判断函数y=f(x)极值点的个数;
(2)若函数有两个零点x1,x2(x1<x2),设t=$\frac{{x}_{1}}{{x}_{2}}$,证明;x1+x2随着t的增大而增大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x3-3ax+b(a≠0)的图象在点(2,f(2))处的切线方程为y=8.
(1)求实数a,b的值;
(2)求函数f(x)的单调区间;
(3)求函数f(x)的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.解不等式$\frac{1}{x+4}$+$\frac{1}{x+5}$>$\frac{1}{x+6}$+$\frac{1}{x+3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.小型风力发电项目投资较少,开发前景广阔.受风力自然资源影响,项目投资存在一定风险.根据测算,IEC(国际电工委员会)风能风区分类标准如表:
风能分类一类风区二类风区
平均风速m/s8.5--106.5--8.5
某公司计划用不超过100万元的资金投资于A、B两个小型风能发电项目.调研结果是,未来一年内,位于一类风区的A项目获利40%的可能性为0.6,亏损20%的可能性为0.4;
B项目位于二类风区,获利35%的可能性为0.6,亏损10%的可能性是0.2,不赔不赚的可能性是0.2.
假设投资A项目的资金为x(x≥0)万元,投资B项目资金为y(y≥0)万元,且公司要求对A项目的投资不得低于B项目.(1)请根据公司投资限制条件,写出x,y满足的条件,并将它们表示在平面xOy内;
(2)记投资A,B项目的利润分别为ξ和η,试写出随机变量ξ与η的分布列和期望Eξ,Eη;
(3)根据(1)的条件和市场调研,试估计一年后两个项目的平均利润之和z=Eξ+Eη的最大值,并据此给出公司分配投资金额建议.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知直线l:3x+y-6=0和圆C:x2+y2-2y-4=0.
(1)求圆的圆心和半径,并求出圆心到到直线l的距离.
(2)若相交,求出直线被圆所截得的弦长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知某正三棱锥的三视图如图所示,则该正三棱锥的侧视图的面积为(  )
A.$9\sqrt{2}$B.9C.3$\sqrt{3}$D.2$\sqrt{6}$

查看答案和解析>>

同步练习册答案