精英家教网 > 高中数学 > 题目详情
11.若函数y=$\frac{1}{2}$cosx(0≤x≤π)的图象和直线y=2、直线x=π、y轴围成一个封闭的平面图形,则这个封闭图形的面积是2π.

分析 画出函数y=$\frac{1}{2}$cosx,(0≤x≤π)的图象和直线y=2、直线x=π、y轴围成一个封闭的平面图形如图,容易求出封闭图形的面积.

解答 解:画出函数y=$\frac{1}{2}$cosx,(0≤x≤π)的图象和直线y=2、
直线x=π、y轴围成一个封闭的平面图形如图:
显然图中封闭图形的面积,就是矩形面积=2π.
故答案为:2π

点评 本题是基础题,考查余弦函数的图象,几何图形的面积的求法,利用图象的对称性解答,简化解题过程,可以利用积分求解;考查发现问题解决问题的能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设函数f(x)与函数g(x)是定义在同一区间上的两个函数,若函数y=f(x)-g(x)在次区间上有两个不同的零点,则称函数f(x),g(x)在此区间上是“交织函数”,若f(x)=4|x|-$\frac{9}{4}$与g(x)=2x+m在(-∞,+∞)上是“交织函数”,则m的取值范围为(  )
A.(-$\frac{9}{4}$,-2]B.[-1,0]C.(-∞,-2]D.(-$\frac{9}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=alnx+x-1(a∈R).若f(x)≥0对于任意x∈[1,+∞)恒成立,则实数a的取值范围是(  )
A.(-∞,-1]B.[-1,+∞)C.(-∞,1]D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图,下列程序执行后输出的结果是(  )
A.3B.6C.10D.15

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.由①y=2x+5是一次函数;②y=2x+5的图象是一条直线;③一次函数的图象是一条直线.写一个“三段论”形式的正确推理,则作为大前提、小前提和结论的分别是(  )
A.②①③B.③②①C.①②③D.③①②

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.复数z=3i(i+1)的实部与虚部分别为(  )
A.3,3B.-3,-3iC.-3,3D.-3,3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若函数f(x)是以π为周期的奇函数,且当$x∈[{-\frac{π}{2}\;,\;0})$时,f(x)=cosx,则$f({-\frac{5π}{3}})$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=a(x+1)2ln(x+1)+bx(a,b∈R),曲线y=f(x)过点(e-1,e2-e+1)(e是自然对数的底数),且在点(0,0)处的切线方程为y=0.
(1)求a,b的值;
(2)证明:当x≥0时,f(x)≥x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(年底余额)如表:
年份20122013201420152016
时间代号t12345
储蓄存款y(千亿元)567811
(1)求y关于t的回归方程$\widehaty=\widehatb•t+\widehata$;
(2)用所求回归方程预测该地区2017年(t=6)的人民币储蓄存款.
附:回归方程$\widehaty=\widehatb•t+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t\overline y}}}{{\sum_{i=1}^n{{t_i}^2-n\overline{t^2}}}},\widehata=\overline y-\widehatb\overline t$.

查看答案和解析>>

同步练习册答案