分析 (1)求出函数的导数,计算f′(0)=0,f(e-1)=e2-e+1,求出a,b的值即可;
(2)设g(x)=(x+1)2ln(x+1)-x-x2(x≥0),求出函数的导数,根据函数的单调性证明即可.
解答 (1)解:f'(x)=2a(x+1)ln(x+1)+a(x+1)+b,
因为f'(0)=a+b=0,f(e-1)=ae2+b(e-1)=a(e2-e+1)=e2-e+1,
所以a=1,b=-1.
(2)证明:f(x)=(x+1)2ln(x+1)-x,
设g(x)=(x+1)2ln(x+1)-x-x2(x≥0),
则m(x)=g'(x)=2(x+1)ln(x+1)-x,
m'(x)=2ln(x+1)+1>0,
所以m(x)在[0,+∞)上单调递增,
所以m(x)≥m(0)=0,
所以g(x)在[0,+∞)上单调递增,
所以g(x)≥g(0)=0.
所以f(x)≥x2.
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及不等式的证明,是一道中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0] | B. | [-∞,0) | C. | (-∞,-3) | D. | (-∞,-3] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {-$\frac{4}{3}$,$\frac{2}{3}$} | B. | {$\frac{4}{3}$,-$\frac{2}{3}$} | C. | {-$\frac{4}{3}$,$\frac{2}{3}$,$\frac{4}{3}$} | D. | {-$\frac{4}{3}$,-$\frac{2}{3}$,$\frac{2}{3}$} |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com