分析 (1)曲线C1:$\left\{\begin{array}{l}x=rcosθ\\ y=rsinθ\end{array}$(θ为参数,0<r<4),利用平方关系可得:普通方程为,利用互化公式可得极坐标方程,曲线C2:$\left\{\begin{array}{l}x=2+2\sqrt{2}cosθ\\ y=2+2\sqrt{2}sinθ\end{array}$(θ为参数),利用平方关系可得普通方程,利用互化公式可得极坐标方程.射线$θ=α(0<α<\frac{π}{2})$与曲线C1交于N点,与曲线C2交于O,P两点,且|PN|最大值为2$\sqrt{2}$,可得r=2$\sqrt{2}$.
(2)由题意可得:N(r,α),Q$(r,α+\frac{π}{4})$,P$(4\sqrt{2}sin(α+\frac{π}{4}),α)$,M$(4\sqrt{2}sin(α+\frac{π}{2}),α+\frac{π}{4})$.S四边形MPNQ=S△OPM-S△ONQ,利用三角函数的单调性值域即可得出.
解答 解:(1)曲线C1:$\left\{\begin{array}{l}x=rcosθ\\ y=rsinθ\end{array}$(θ为参数,0<r<4),普通方程为x2+y2=r2(0<r<4),极坐标方程为C1:ρ=r(0<r<4),
曲线C2:$\left\{\begin{array}{l}x=2+2\sqrt{2}cosθ\\ y=2+2\sqrt{2}sinθ\end{array}$(θ为参数),普通方程为(x-2)2+(y-2)2=8,极坐标方程为C2:ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$),
射线$θ=α(0<α<\frac{π}{2})$与曲线C1交于N点,与曲线C2交于O,P两点,且|PN|最大值为2$\sqrt{2}$,r=2$\sqrt{2}$.
(2)由题意可得:N(r,α),Q$(r,α+\frac{π}{4})$,P$(4\sqrt{2}sin(α+\frac{π}{4}),α)$,M$(4\sqrt{2}sin(α+\frac{π}{2}),α+\frac{π}{4})$.
∴S四边形MPNQ=S△OPM-S△ONQ=$\frac{1}{2}$$4\sqrt{2}sin(α+\frac{π}{4})$×$4\sqrt{2}sin(α+\frac{π}{2})$×sin$\frac{π}{4}$-$\frac{1}{2}{r}^{2}•sin\frac{π}{4}$=$8\sqrt{2}$$sin(α+\frac{π}{4})$cosα-2$\sqrt{2}$
=$4\sqrt{2}sin(2α+\frac{π}{4})$+4-2$\sqrt{2}$≤4+2$\sqrt{2}$.
当$sin(2α+\frac{π}{4})$=1时取等号,
∴四边形MPNQ面积的最大值是4+2$\sqrt{2}$.
点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、三角函数求值、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 年份 | 2012 | 2013 | 2014 | 2015 | 2016 |
| 时间代号t | 1 | 2 | 3 | 4 | 5 |
| 储蓄存款y(千亿元) | 5 | 6 | 7 | 8 | 11 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a、b都小于2 | B. | a、b至少有一个不小于2 | ||
| C. | a、b至少有两个不小于2 | D. | a、b至少有一个小于2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com