精英家教网 > 高中数学 > 题目详情
10.在平面直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}x=rcosθ\\ y=rsinθ\end{array}$(θ为参数,0<r<4),曲线C2:$\left\{\begin{array}{l}x=2+2\sqrt{2}cosθ\\ y=2+2\sqrt{2}sinθ\end{array}$(θ为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,射线$θ=α(0<α<\frac{π}{2})$与曲线C1交于N点,与曲线C2交于O,P两点,且|PN|最大值为2$\sqrt{2}$.
(1)将曲线C1与曲线C2化成极坐标方程,并求r的值;
(2)射线θ=α+$\frac{π}{4}$与曲线C1交于Q点,与曲线C2交于O,M两点,求四边形MPNQ面积的最大值.

分析 (1)曲线C1:$\left\{\begin{array}{l}x=rcosθ\\ y=rsinθ\end{array}$(θ为参数,0<r<4),利用平方关系可得:普通方程为,利用互化公式可得极坐标方程,曲线C2:$\left\{\begin{array}{l}x=2+2\sqrt{2}cosθ\\ y=2+2\sqrt{2}sinθ\end{array}$(θ为参数),利用平方关系可得普通方程,利用互化公式可得极坐标方程.射线$θ=α(0<α<\frac{π}{2})$与曲线C1交于N点,与曲线C2交于O,P两点,且|PN|最大值为2$\sqrt{2}$,可得r=2$\sqrt{2}$.
(2)由题意可得:N(r,α),Q$(r,α+\frac{π}{4})$,P$(4\sqrt{2}sin(α+\frac{π}{4}),α)$,M$(4\sqrt{2}sin(α+\frac{π}{2}),α+\frac{π}{4})$.S四边形MPNQ=S△OPM-S△ONQ,利用三角函数的单调性值域即可得出.

解答 解:(1)曲线C1:$\left\{\begin{array}{l}x=rcosθ\\ y=rsinθ\end{array}$(θ为参数,0<r<4),普通方程为x2+y2=r2(0<r<4),极坐标方程为C1:ρ=r(0<r<4),
曲线C2:$\left\{\begin{array}{l}x=2+2\sqrt{2}cosθ\\ y=2+2\sqrt{2}sinθ\end{array}$(θ为参数),普通方程为(x-2)2+(y-2)2=8,极坐标方程为C2:ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$),
射线$θ=α(0<α<\frac{π}{2})$与曲线C1交于N点,与曲线C2交于O,P两点,且|PN|最大值为2$\sqrt{2}$,r=2$\sqrt{2}$.
(2)由题意可得:N(r,α),Q$(r,α+\frac{π}{4})$,P$(4\sqrt{2}sin(α+\frac{π}{4}),α)$,M$(4\sqrt{2}sin(α+\frac{π}{2}),α+\frac{π}{4})$.
∴S四边形MPNQ=S△OPM-S△ONQ=$\frac{1}{2}$$4\sqrt{2}sin(α+\frac{π}{4})$×$4\sqrt{2}sin(α+\frac{π}{2})$×sin$\frac{π}{4}$-$\frac{1}{2}{r}^{2}•sin\frac{π}{4}$=$8\sqrt{2}$$sin(α+\frac{π}{4})$cosα-2$\sqrt{2}$
=$4\sqrt{2}sin(2α+\frac{π}{4})$+4-2$\sqrt{2}$≤4+2$\sqrt{2}$.
当$sin(2α+\frac{π}{4})$=1时取等号,
∴四边形MPNQ面积的最大值是4+2$\sqrt{2}$.

点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、三角函数求值、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.设函数f(x)=a(x+1)2ln(x+1)+bx(a,b∈R),曲线y=f(x)过点(e-1,e2-e+1)(e是自然对数的底数),且在点(0,0)处的切线方程为y=0.
(1)求a,b的值;
(2)证明:当x≥0时,f(x)≥x2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.随着我国经济的发展,居民的储蓄存款逐年增长,设某地区城乡居民人民币储蓄存款(年底余额)如表:
年份20122013201420152016
时间代号t12345
储蓄存款y(千亿元)567811
(1)求y关于t的回归方程$\widehaty=\widehatb•t+\widehata$;
(2)用所求回归方程预测该地区2017年(t=6)的人民币储蓄存款.
附:回归方程$\widehaty=\widehatb•t+\widehata$中,$\widehatb=\frac{{\sum_{i=1}^n{{t_i}{y_i}-n\overline t\overline y}}}{{\sum_{i=1}^n{{t_i}^2-n\overline{t^2}}}},\widehata=\overline y-\widehatb\overline t$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2.
(1)若$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为60°,求|$\overrightarrow{a}$+$\overrightarrow{b}$|的值;
(2)若($\overrightarrow{a}$+$\overrightarrow{b}$)⊥$\overrightarrow{a}$,求$\overrightarrow{a}$与$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}的前n项和为Sn=n2+3n+5,则an=$\left\{\begin{array}{l}{9,n=1}\\{2n+2,n≥2,n∈N*}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)(用分析法证明)$\sqrt{3}+\sqrt{8}<2+\sqrt{7}$
(2)若a>0,b>0,c>0,且a+b+c=1求证:$\frac{1}{a}+\frac{1}{b}+\frac{1}{c}≥9$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.用反证法证明命题:“已知a、b是自然数,若a+b≥3,则a、b中至少有一个不小于2”提出的假设应该是(  )
A.a、b都小于2B.a、b至少有一个不小于2
C.a、b至少有两个不小于2D.a、b至少有一个小于2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.是否存在实数a,使得函数y=cos2x+asinx+$\frac{5a}{8}$-$\frac{5}{2}$在闭区间[0,π]的最大值是0?若存在,求出对应的a的值;若不存在,试说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=lnx-\frac{1}{2}{x^2}+\frac{a}{x}$(a∈R,a为常数),函数$g(x)={e^{1-x}}+\frac{2a-1}{2}{x^2}-1$(e为自然对数的底).
(1)讨论函数f(x)的极值点的个数;
(2)若不等式f(x)≤g(x)对x∈[1,+∞)恒成立,求实数的a取值范围.

查看答案和解析>>

同步练习册答案