分析 首先根据Sn=n2+3n+5,求出a1的值,然后利用an=Sn-Sn-1求出当n>2时,an的表达式,然后验证a1的值,最后写出an的通项公式.
解答 解:∵Sn=n2+3n+5,a1=S1=9,
∴an=Sn-Sn-1=n2+3n+5-[(n-1)2+3(n-1)+5]=2n+2(n>1),
∵当n=1时,a1=9≠4,
∴an=$\left\{\begin{array}{l}{9,n=1}\\{2n+2,n≥2,n∈N*}\end{array}\right.$,
故答案为:$\left\{\begin{array}{l}{9,n=1}\\{2n+2,n≥2,n∈N*}\end{array}\right.$.
点评 本题主要考查数列递推式的知识点,解答本题的关键是利用an=Sn-Sn-1(n≥2)进行解答,此题难度不大,很容易进行解答.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a=-8,b=-10 | B. | a=-4,b=-9 | C. | a=-1,b=9 | D. | a=-1,b=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com