分析 (1)由A,B,C成等差数列,可得2B=A+C=π-B,解得B.根据A的范围,利用和差公式即可得出.
(2)a,b,c成等比数列,可得b2=ac.利用正弦定理可得:sin2B=sinAsinC.cosB=$\frac{4}{5}$,可得:sinB=$\sqrt{1-co{s}^{2}B}$.可得$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{cosA}{sinA}+\frac{cosC}{sinC}$,化简即可得出.
解答 解:(1)∵A,B,C成等差数列,∴2B=A+C=π-B,解得B=$\frac{π}{3}$.
A∈$(0,\frac{2π}{3})$,
∴cosA+cosC=cosA+cos$(\frac{2π}{3}-A)$=$\frac{\sqrt{3}}{2}$sinA+$\frac{1}{2}$cosA=sin$(A+\frac{π}{6})$∈$(\frac{1}{2},1]$.
(2)a,b,c成等比数列,∴b2=ac.
∴sin2B=sinAsinC.
∴cosB=$\frac{4}{5}$,可得:sinB=$\sqrt{1-co{s}^{2}B}$=$\frac{3}{5}$.
∴$\frac{1}{tanA}$+$\frac{1}{tanC}$=$\frac{cosA}{sinA}+\frac{cosC}{sinC}$=$\frac{sin(A+C)}{sinAsinC}$=$\frac{sinB}{sinAsinC}$=$\frac{1}{sinB}$=$\frac{5}{3}$.
点评 本题考查了正弦定理余弦定理、同角三角函数基本关系式、和差公式倍角公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $(-∞,\frac{5}{2}]$ | B. | (2,4) | C. | $(\frac{5}{2},4)$ | D. | (1,$\frac{5}{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-$\frac{9}{4}$,-2] | B. | [-1,0] | C. | (-∞,-2] | D. | (-$\frac{9}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,2x0+1>0 | B. | ?x∈R,2x+1>0 | C. | ?x0∈R,2x0+1≤0 | D. | ?x∈R,2x+1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1] | B. | [-1,+∞) | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com