分析 根据三角函数的图象,求出函数的周期,进而求出ω和φ即可得到结论.
解答 解:由图象得$\frac{T}{2}$=2π-$\frac{3}{4}π$=$\frac{5}{4}π$,
则周期T=$\frac{5}{2}$π=$\frac{2π}{ω}$,
则ω=$\frac{4}{5}$,
则y=sin($\frac{4}{5}$x+φ),
当x=$\frac{3}{4}π$时,y=-1,
则sin($\frac{4}{5}$×$\frac{3}{4}π$+φ)=-1,
即$\frac{3}{5}$π+φ=-$\frac{π}{2}$+2kπ,
即φ=2kπ-$\frac{11π}{10}$,k∈Z,
∵-π<φ≤π,
∴当k=1时,φ=$\frac{9}{10}π$,
故答案为:$\frac{9}{10}π$
点评 本题主要考查三角函数解析式的求解,根据三角函数图象求出ω 和φ的值是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,2x0+1>0 | B. | ?x∈R,2x+1>0 | C. | ?x0∈R,2x0+1≤0 | D. | ?x∈R,2x+1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{1}{2}$ | B. | $\frac{1}{2}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com