分析 当点C位于垂直于面AOB的直径端点且∠AOB=90°时,三棱锥O-ABC的体积最大,利用三棱锥O-ABC体积的最大值为1,求出半径,即可求出球O的体积.
解答
解:如图所示,当点C位于垂直于面AOB的直径端点且∠AOB=90°时,三棱锥O-ABC的体积最大,设球O的半径为R,此时VO-ABC=VC-AOB=$\frac{1}{3}×\frac{1}{2}×R×R×R$=1,
∴R3=6,则球O的体积为$\frac{4}{3}π{R}^{3}$=8π.
故答案为8π.
点评 本题考查球的半径,考查体积的计算,确定点C位于垂直于面AOB的直径端点时,三棱锥O-ABC的体积最大是关键.
科目:高中数学 来源: 题型:选择题
| A. | 若l∥α,l⊥m,则m⊥α | B. | 若l∥α,l⊥m,m?β,则α⊥β | ||
| C. | 若l∥α,l∥m,则m∥α | D. | 若α∥β,l∥α,l∥m,m?β,则m∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -8 | B. | -4 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 1~50名 | 951~1000名 | |
| 近视 | 41 | 32 |
| 不近视 | 9 | 18 |
| P(K2≥k) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 |
| k | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | (¬p)∧q | C. | p∧(¬q) | D. | (¬p)∧(¬q) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 6 | B. | $\frac{17}{3}$ | C. | $\frac{20}{3}$ | D. | -1 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com