精英家教网 > 高中数学 > 题目详情
5.复数$\frac{2}{{1+{i}}}+\frac{{1+{i}}}{2}$在复平面中的第四象限.

分析 化简复数为a+bi的形式,然后判断即可.

解答 解:复数$\frac{2}{{1+{i}}}+\frac{{1+{i}}}{2}$=$\frac{2(1-i)}{(1+i)(1-i)}+\frac{1+i}{2}$=$1-i+\frac{1+i}{2}$=$\frac{3}{2}-\frac{1}{2}i$.
即复数对应点为:($\frac{3}{2},-\frac{1}{2}$)在第四象限.
故答案为:四.

点评 本题考查复数的代数形式混合运算,复数的几何意义,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.直线Ax+By+C=0(A,B≠0),不过第二象限,求A,B满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在△ABC中,B=$\frac{π}{6}$,c=150,b=50$\sqrt{3}$,则△ABC为(  )
A.直角三角形B.等腰三角形或直角三角形
C.等边三角形D.等腰三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知双曲线C是以原点为中心,其右焦点为F(3,0),离心率为$\frac{3}{2}$,则双曲线C的方程是$\frac{x^2}{4}-\frac{y^2}{5}=1$,渐近线方程是$y=±\frac{{\sqrt{5}}}{2}x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知i为虚数单位,(2+i)z=1+2i,则z的共轭复数$\overline{z}$=(  )
A.$\frac{4}{5}$+$\frac{3}{5}$iB.$\frac{4}{5}$-$\frac{3}{5}$iC.$\frac{4}{3}$+iD.$\frac{4}{3}$-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.某企业人力资源部为了研究企业员工工作积极性和对待企业改革态度的关系,随机抽取了72名员工进行调查,所得的数据如表所示:
积极支持改革不太支持改革合    计
工作积极28836
工作一般162036
合    计442872
对于人力资源部的研究项目,根据上述数据能得出的结论是
(参考公式与数据:${Χ^2}=\frac{{n{{({n_{11}}{n_{22}}-{n_{12}}{n_{21}})}^2}}}{{{n_{1+}}{n_{2+}}{n_{+1}}{n_{+2}}}}$.当Χ2>3.841时,有95%的把握说事件A与B有关;当Χ2>6.635时,有99%的把握说事件A与B有关; 当Χ2<3.841时认为事件A与B无关.)(  )
A.有99%的把握说事件A与B有关B.有95%的把握说事件A与B有关
C.有90%的把握说事件A与B有关D.事件A与B无关

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.要完成下列2项调查:
①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;
②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况.
应采用的抽样方法是(  )
A.①用随机抽样法  ②用系统抽样法B.①用分层抽样法  ②用随机抽样法
C.①用系统抽样法  ②用分层抽样法D.①、②都用分层抽样法

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.班主任为了对本班学生的考试成绩进行分析,决定从全班25名女同学,15名男同学中随机抽取一个容量为8的样本进行分析.随机抽出8位,他们的数学分数从小到大排序是:60、65、70、75、80、85、90、95,物理分数从小到大排序是:72、77、80、84、88、90、93、95.
(Ⅰ)如果按性别比例分层抽样,男女同学分别抽取多少人?
(Ⅱ)若这8位同学的数学、物理分数对应如下表:
学生编号12345678
数学分数x6065707580859095
物理分数y7277808488909395
根据上表数据用变量y与x的相关系数或散点图说明物理成绩y与数学成绩x之间是否具有线性相关性?如果具有线性相关性,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数$r=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sqrt{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}\sqrt{\sum_i^n{({y_i}-\overline y}}{)^2}}}$;回归直线的方程是:$\widehat{y}$=bx+a.
其中对应的回归估计值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$;
参考数据:$\overline{x}$=77.5,$\overline{y}$=85,$\sum_{i=1}^{8}$(x1-$\overline{x}$)2≈1050,$\sum_{i=1}^{8}$(y1-$\overline{y}$)2≈456;$\sum_{i=1}^{8}$(x1-$\overline{x}$)(y1-$\overline{y}$)≈688,$\sqrt{1050}$≈32.4,$\sqrt{456}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知1,2,3,4,x1,x2,x3的平均数是8,那么x1+x2+x3的值是(  )
A.14B.22C.32D.46

查看答案和解析>>

同步练习册答案