精英家教网 > 高中数学 > 题目详情
19.已知全集U=R,集合A={x|-2≤x<0},B={x|2x-1<$\frac{1}{4}$},则A∩B=(  )
A.(-∞,-2)∪(-1,+∞)B.(-∞,-2)∪[-1,+∞)C.[-2,-1)D.(-2,+∞)

分析 求出B中不等式的解集确定出B,找出A与B的交集即可.

解答 解:由B中不等式变形得:2x-1<$\frac{1}{4}$=2-2,得到x-1<-2,
解得:x<-1,即B=(-∞,-1),
∵A=[-2,0),
∴A∩B=[-2,-1),
故选:C.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=ax+m(a∈R)所表示的直线的纵截距为-1,函数g(x)=lnx+f(x)+n且g(1)=f′(1).若命题“?x0∈(0,+∞),使得f(x0)g(x0)<0”为假命题,则实数a的取值范围为a=e或a≤-$\frac{1}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.若$\frac{1-tanθ}{1+tanθ}$=3-2$\sqrt{2}$,求$\frac{(sinθ+cosθ)^{2}-1}{cotθ-sinθ•cosθ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.掷两枚骰子,则向上的点数之和小于6的概率为$\frac{5}{18}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$离心率$e=\frac{{\sqrt{3}}}{2}$,短轴长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ) 设直线l过椭圆C的右焦点,并与椭圆相交于E,F两点,截得的弦长为$\frac{5}{2}$,求直线l的方程;
(Ⅲ) 如图,椭圆左顶点为A,过原点O的直线(与坐标轴不重合)与椭圆C交于P,Q两点,直线PA,QA分别与y轴交于M,N两点.试问:以MN为直径的圆是否经过定点(与直线PQ的斜率无关)?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,在坡角(坡面与水平面的夹角)为15°的观礼台上,某一列座位与旗杆在同一个垂直于地面的平面上,在该列的第一排和最后一排测得旗杆的仰角分别为60°和30°,且第一排和最后一排的距离10$\sqrt{6}$米,则旗杆的高度为30米.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,梯形ABCD所在平面与以AB为直径的圆所在平面垂直,O为圆心,AB∥CD,∠BAD=90°,AB=2CD.若点P是⊙O上不同于A,B的任意一点.
(Ⅰ)求证:BP⊥平面APD;
(Ⅱ)设平面BPC与平面OPD的交线为直线l,判断直线BC与直线l的位置关系,并加以证明;
(Ⅲ)求几何体DOPA与几何体DCBPO的体积之比.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,矩形ABCD中,BC=2,AB=1,PA⊥平面ABCD,BE∥PA,BE=$\frac{1}{2}$PA,F为PA的中点.
(1)求证:PC∥平面BDF.
(2)记四棱锥C-PABE的体积为V1,三棱锥P-ACD的体积为V2,求$\frac{V_1}{V_2}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数f(x)=ln(x+$\sqrt{a+{x}^{2}}$)为奇函数,则a=(  )
A.-1B.0C.1D.-1或1

查看答案和解析>>

同步练习册答案