精英家教网 > 高中数学 > 题目详情

【题目】已知点F为椭圆ab0)的一个焦点,点A为椭圆的右顶点,点B为椭圆的下顶点,椭圆上任意一点到点F距离的最大值为3,最小值为1.

1)求椭圆的标准方程;

2)若MN在椭圆上但不在坐标轴上,且直线AM∥直线BN,直线ANBM的斜率分别为k1k2,求证:k1k2e21e为椭圆的离心率).

【答案】12)证明见解析

【解析】

1)根据椭圆上任意一点到点F距离的最大值为3,最小值为1,则有求解.

2)由(1)可知,A20),B0),分别设直线AM的方程为ykx2),直线BN的方程为ykx,与椭圆方程联立,用韦达定理求得点MN的坐标,再利用斜率公式代入k1k2求解.

1)由题意可知,,解得

b2a2c23

∴椭圆的标准方程为:

2)由(1)可知,A20),B0),

设直线AM的斜率为k,则直线BN的斜率也为k

故直线AM的方程为ykx2),直线BN的方程为ykx

得:(3+4k2x216k2x+16k2120

,∴

得:

k1k2

又∵

k1k2e21.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从的路径中,最短路径的长度为( )

A. B. C. D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,已知多面体PABCDE的底面ABCD是边长为2的菱形,底面ABCD,且.

1)证明:平面平面

2)若,求多面体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的部分图象如图所示

(1)的最小正周期及解析式;

(2)求函数在区间上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥的顶点为A,高和底面的半径相等,BE是底面圆的一条直径,点D为底面圆周上的一点,且∠ABD60°,则异面直线ABDE所成角的正弦值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆锥的顶点为A,高和底面的半径相等,BE是底面圆的一条直径,点D为底面圆周上的一点,且∠ABD60°,则异面直线ABDE所成角的正弦值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市在进行创建文明城市的活动中,为了解居民对“创建文明城”的满意程度,组织居民给活动打分(分数为整数,满分100分),从中随机抽取一个容量为120的样本,发现所给数据均在[40100]内.现将这些分数分成以下6组并画出样本的频率分布直方图,但不小心污损了部分图形,如图所示.观察图形则下列说法中有错误的是(

A.第三组的频数为18

B.根据频率分布直方图估计众数为75

C.根据频率分布直方图估计样本的平均数为75

D.根据频率分布直方图估计样本的中位数为75

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥SABCD中,侧面SCD为钝角三角形且垂直于底面ABCDCDSD,点MSA的中点,AD//BC,∠ABC90°,ABADBCa

1)求证:平面MBD⊥平面SCD

2)若∠SDC120°,求三棱锥CMBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了茎叶图:则下列结论中表述不正确的是

A. 第一种生产方式的工人中,有75%的工人完成生产任务所需要的时间至少80分钟

B. 第二种生产方式比第一种生产方式的效率更高

C. 这40名工人完成任务所需时间的中位数为80

D. 无论哪种生产方式的工人完成生产任务平均所需要的时间都是80分钟.

查看答案和解析>>

同步练习册答案