【题目】某圆柱的高为2,底面周长为16,其三视图如图所示,圆柱表面上的点
在正视图上的对应点为
,圆柱表面上的点
在左视图上的对应点为
,则在此圆柱侧面上,从
到
的路径中,最短路径的长度为( )
![]()
A.
B.
C.
D. 2
科目:高中数学 来源: 题型:
【题目】为了监控某种零件的一条生产线的生产过程,检验员每隔30min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:(12分)
抽取次序 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
零件尺寸 | 9.95 | 10.12 | 9.96 | 9.96 | 10.01 | 9.92 | 9.98 | 10.04 |
抽取次序 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
零件尺寸 | 10.26 | 9.91 | 10.13 | 10.02 | 9.22 | 10.04 | 10.05 | 9.95 |
经计算得
=
xi=9.97,s=
=
=0.212,
≈18.439,
(xi﹣
)(i﹣8.5)=﹣2.78,其中xi为抽取的第i个零件的尺寸,i=1,2,…,16.
(1)求(xi , i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(
﹣3s,
+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(
﹣3s,
+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(xi , yi)(i=1,2,…,n)的相关系数r=
,
≈0.09.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{
}的前n项和
=2-
,数列{
}满足b1=1, b3+b7=18,且
+
=2
(n≥2).
(1)求数列{
}和{
}的通项公式;
(2)若
=
,求数列{
}的前n项和
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法错误的是_____________.
①.如果命题“
”与命题“
或
”都是真命题,那么命题
一定是真命题.
②.命题
,则![]()
③.命题“若
,则
”的否命题是:“若
,则
”
④.特称命题 “
,使
”是真命题.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近日,某公司对其生产的一款产品进行促销活动,经测算该产品的销售量P(单位:万件)与促销费用x(单位:万元)满足函数关系:p=3﹣
(其中0≤x≤a,a为正常数).已知生产该产品件数为P(单位:万件)时,还需投入成本10+2P(单位:万元)(不含促销费用),产品的销售价格定为(4+
)元/件,假定生产量与销售量相等.
(1)将该产品的利润y(单位:万元)表示为促销费用x(单位:万元)的函数;
(2)促销费用x(单位:万元)是多少时,该产品的利润y(单位:万元)取最大值?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an},满足a1=1,a2=3,an+2=3an+1﹣2an , bn=an+1﹣an ,
(1)求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式;.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体
中,
在线段
上运动且不与
,
重合,给出下列结论:
①
;
②
平面
;
③二面角
的大小随
点的运动而变化;
④三棱锥
在平面
上的投影的面积与在平面
上的投影的面积之比随
点的运动而变化;
其中正确的是( )
A. ①③④ B. ①③
C. ①②④ D. ①②
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正三角形
中,过其中心
作边
的平行线,分别交
,
与
,
,将
沿
折起到
的位置,使点
在平面
上的射影恰是线段
的中点
,则二面角
的平面角的大小是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com