精英家教网 > 高中数学 > 题目详情
18.为得到函数y=cos(x+$\frac{π}{3}$)的图象,只需将函数y=sin(x+$\frac{2π}{3}$)的图象(  )
A.向左平移$\frac{π}{6}$个长度单位B.向右平移$\frac{π}{6}$个长度单位
C.向左平移$\frac{5π}{6}$个长度单位D.向右平移$\frac{5π}{6}$个长度单位

分析 利用诱导公式以及函数y=Asin(ωx+φ)的图象变换规律,得出结论.

解答 解:将函数y=sin(x+$\frac{2π}{3}$)=cos(x+$\frac{π}{6}$)的图象向左平移$\frac{π}{6}$个长度单位,可得函数y=cos(x+$\frac{π}{6}$+$\frac{π}{6}$)=cos(x+$\frac{π}{3}$)的图象,
故选:A.

点评 本题主要考查诱导公式的应用,函数y=Asin(ωx+φ)的图象变换规律,统一这两个三角函数的名称,是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.复数z1=$\sqrt{3m-1}$-2mi,z2=-m+m2i,若z1+z2>0,则实数m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.点(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)在α的终边上,则cosα=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知sinα=-$\frac{2}{3}$,α∈($\frac{3π}{2}$,2π)cosβ=-$\frac{5}{13}$,β是第三象限角,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$\overrightarrow{a}$=(2sin$\frac{x}{2}$,$\sqrt{3}$+1),$\overrightarrow{b}$=(cos$\frac{x}{2}$-$\sqrt{3}$sin$\frac{x}{2}$,1),f(x)=$\overrightarrow{a}$$•\overrightarrow{b}$+m.
(1)求f(x)在[0,2π]上的单调区间;
(2)当x∈[0,$\frac{π}{2}$]时,f(x)的最小值为2,求f(x)≥2成立的x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.点P在圆x2+y2-8x-4y+16=0上,点Q在圆x2+y2+4x+2y-11=0上,则|PQ|的最小值为3$\sqrt{5}$-6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.计算${∫}_{\frac{π}{4}}^{\frac{π}{2}}$cos(2x-$\frac{π}{2}$)dx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设函数f(x)=cos($\frac{π}{2}$-x)cosx+sin2(π-x)-$\frac{1}{2}$
(Ⅰ)求函数f(x)的最小正周期和单调递增区间;
(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,a=2,且f($\frac{A}{2}$)=-$\frac{1}{10}$,则当△ABC的周长取最大值时,求b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若集合A={1,x,4},B={1,x2},且B⊆A,则x=(  )
A.2,或-2,或0B.2,或-2,或0,或1C.2D.±2

查看答案和解析>>

同步练习册答案