精英家教网 > 高中数学 > 题目详情
8.已知$\overrightarrow{a}$,$\overrightarrow{b}$是夹角为60°的两个单位向量,则|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{3}$.

分析 根据条件,$|\overrightarrow{a}|=|\overrightarrow{b}|=1$,$<\overrightarrow{a},\overrightarrow{b}>=60°$,然后进行数量积的运算便可求出$(\overrightarrow{a}+\overrightarrow{b})^{2}$,从而求出$|\overrightarrow{a}+\overrightarrow{b}|$的值.

解答 解:$(\overrightarrow{a}+\overrightarrow{b})^{2}={\overrightarrow{a}}^{2}+2\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$
=1+2cos60°+1
=3;
∴$|\overrightarrow{a}+\overrightarrow{b}|=\sqrt{3}$.
故答案为:$\sqrt{3}$.

点评 考查单位向量的概念,向量数量积的运算及计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.一个几何体的三视图及其尺寸如图(单位:cm),则该几何体的体积是(  )cm3
A.20πB.16πC.15πD.12π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设m,n为两条不同的直线,α,β为两个不同的平面,给出下列命题:
①若m⊥α,m⊥β,则α∥β②若m∥α,m∥β,则α∥β③若m∥α,n∥α,则m∥n④若m⊥α.n⊥α,则m∥n
上述命题中,所有真命题的序号是(  )
A.①④B.②③C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数$f(x)=\sqrt{3}sin({2x-\frac{π}{6}})+cos({2x-\frac{π}{6}})$,x∈R,
(1)求f(x)的最小正周期;
(2)求函数f(x)的最大值及此时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.用(x+2)(x-1)除多项式x6+x5+2x3-x2+3所得余式是-x+5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是$\left\{\begin{array}{l}{x=\frac{\sqrt{2}}{2}t+m}\\{y=\frac{1}{2}t}\end{array}\right.$(t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA|•|PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数$f(x)=\left\{\begin{array}{l}{2^x},x≥0\\-{x^2}-2x+1,x<0\end{array}\right.$,若函数y=f(x)-m有三个不同的零点,则实数m的取值范围是(  )
A.[1,2]B.[1,2)C.(1,2]D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数$f(x)=\frac{{3{x^2}}}{{\sqrt{1-x}}}+lg(-3{x^2}+5x+2)$的定义域是(  )
A.(-$\frac{1}{3}$,+∞)B.(-$\frac{1}{3}$,1)C.(-$\frac{1}{3}$,$\frac{1}{3}$)D.(-∞,-$\frac{1}{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.(1)求证:当a、b、c为正数时,(a+b+c)($\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$)≥9
(2)已知x∈R,a=x2-1,b=2x+2,求证a,b中至少有一个不少于0.

查看答案和解析>>

同步练习册答案