精英家教网 > 高中数学 > 题目详情
18.已知实数x,y满足$\left\{\begin{array}{l}{y≥x+2}\\{x+y≤a}\\{x≥1}\end{array}\right.$,其中a=${∫}_{0}^{3}$(x2-1)dx,则z=2|x-1|+|y|的最小值是(  )
A.5B.3C.6D.2

分析 根据函数的积分公式求出a的值,然后作出不等式组对应的平面区域,根据直线斜率的公式进行求解即可

解答 解:a=${∫}_{0}^{3}$(x2-1)dx=($\frac{1}{3}$x3-x)|${\;}_{0}^{3}$=$\frac{1}{3}×$33-3=9-3=6,
所以不等式组对应的平面区域如图,所以z=2|x-1|+|y|=2x+y-2,
即y=-2x+2+z,其过区域内的点C(1,3)时z最小,
所以z的最小值为2+3-2=3;
故选B.

点评 本题主要考查线性规划的应用,根据积分公式先求出a的值,利用数形结合以及直线的斜率公式进行求解是解决本题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.将甲、乙两颗骰子先后各抛一次,a、b分别表示抛掷甲、乙两颗骰子所出现的点数﹒图中三角形阴影部分的三个顶点为(0,0)、(4,0)和(0,4).
(1)若点P(a,b)落在如图阴影所表示的平面区域(包括边界)的事件记为A,求事件A的概率;
(2)若点P(a,b)落在直线x+y=m(m为常数)上,且使此事件的概率P最大,求m和P的值﹒

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若f(x)满足关系式f(x)+2($\frac{1}{x}$)=3x,则f(2)的值为(  )
A.1B.-1C.-$\frac{3}{2}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某班级共有52名学生,现将学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知7号,33号,46号学生在样本中,那么在样本中还有一个学生的编号是20号.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知a=log32,那么用a表示log38-log3$\frac{3}{4}$是(  )
A.a-2B.5a-1C.3a-(1+a)2D.3a-a2-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知四面体P-ABC,PA⊥面ABC,PA=4,△ABC是边长为3的正三角形,则四面体P-ABC外接球的表面积是28π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a>0,实数x,y满足$\left\{\begin{array}{l}{x≥1}\\{x+y≤3}\\{y≥a(x-3)}\end{array}\right.$,若z=3x+y的最小值是2,则a=(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=$\frac{ax+b}{{{x^2}+1}}$是定义在R上的奇函数,且f(1)=2.
(1)求实数a,b并写出函数f(x)的解析式;
(2)判断函数f(x)在(-1,1)上的单调性并加以证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=3|x|+log3|x|.
(1)判断函数的奇偶性,并加以证明;
(2)说明函数f(x)在(0,+∞)上的单调性,并利用单调性定义证明;
(3)若 f(2a)<28,求实数a的取值范围.

查看答案和解析>>

同步练习册答案